
TNN-CIM: An In-SRAM CMOS Implementation of
TNN-Based Synaptic Arrays with STDP Learning

Harideep Nair, David Barajas-Jasso, Quinn Jacobson, and John Paul Shen
Electrical and Computer Engineering Department, Carnegie Mellon University

{hpnair, dbarajas, qjacobso, jpshen}@andrew.cmu.edu

Abstract—Temporal Neural Networks (TNNs), a special class
of spiking neural networks (SNNs), process information via spike
timings, analogous to the brain. Recent works have proposed
microarchitecture and custom macros for directly implementing
extremely energy-efficient TNNs with standard CMOS. However,
prior works implement synapses using expensive register-based
counters. Since synapses constitute most of the hardware com-
plexity in TNNs, it is imperative to optimize their implementation.
This work proposes TNN-CIM, an in-SRAM implementation of
synaptic arrays, as a first attempt towards compute-in-memory
(CIM) solution for TNNs. In TNN-CIM, not only are the synaptic
weights stored in SRAM, but synaptic response function genera-
tion (inference) and spike timing dependent plasticity (learning)
are also embedded directly within the SRAM array. Our results in
45nm CMOS demonstrate 1.3x and 1.7x reduction in power and
area respectively while improving latency performance by 1.4x.
Further, we provide transistor count equations to assess hardware
complexity scaling of arbitrary TNN-CIM synaptic arrays.

Index Terms—Temporal Neural Networks, Synaptic Arrays,
STDP, SRAM, Compute-In-Memory, Neuromorphic Computing

I. INTRODUCTION AND BACKGROUND

Neuromorphic computing employing spiking neural net-
works (SNNs) derives its inspiration from brain’s computa-
tional principles and has been touted as a promising approach
for future AI compute systems [1]. Temporal Neural Networks
(TNNs) [2]–[4] are a special class of SNNs that operate on
spike timings and utilize a biologically plausible learning
mechanism called Spike Timing Dependent Plasticity (STDP).
Recent works demonstrated the efficacy of TNNs in delivering
state-of-the-art performance for time-series signal clustering
[5] and handwritten digit recognition [4] applications while
consuming merely tens of uW to tens of mW power [6].

TNNs, structurally and functionally inspired by the neo-
cortex, adhere to a well-defined organizational hierarchy con-
sisting of synapses, neurons, columns (or minicolumns), and
layers [7]. A column forms the fundamental operational build-
ing block for TNNs. Authors in [5] demonstrated that a single
TNN column is powerful enough to outperform other signifi-
cantly more complicated approaches for time-series clustering.
Figure 1 shows a pxq TNN column consisting of q=3 neurons
sharing a set of p=4 synaptic inputs through a 4x3 synaptic
crossbar, followed by winner-take-all (WTA) inhibition across
the neuron outputs. The synaptic crossbar constitutes bulk of
the compute and thereby hardware complexity in a column.

Recent works have proposed a microarchitecture framework
[8] and a set of custom macro building blocks [6] for efficient

Fig. 1: A 4x3 TNN column containing: 4 synaptic inputs per
neuron and 3 neurons with its 4x3 synaptic crossbar, and 1-
WTA lateral inhibition [adapted from [12]]. Each of the 12
synapses in the crossbar stores a b-bit weight value, performs
local inference via counter-based FSM, and updates its weight
locally via STDP learning, concurrently every compute cycle.

hardware implementation of TNNs. However, these works rely
on expensive flip-flops to implement the synaptic crossbar. Our
work is a first attempt at implementing the entire synaptic
crossbar array in SRAM, to significantly reduce the hardware
complexity. This serves as the first step towards compute-in-
memory (CIM) implementation of TNNs, hence named TNN-

CIM. SRAM is chosen in this work due to its compatibility
with standard CMOS logic and maturity [9], [10] as compared
to other emerging approaches such as Resistive RAM [11].

Our SRAM design follows the very recent work titled FAST
[13], which proposed a 10T SRAM cell with two intra-cell
NMOS switches and one inter-cell transmission gate switch.
In contrast to prior SRAM-based CIM works [14]–[19] that are
limited by serial row-by-row access, FAST enables concurrent
row compute through multi-phased shifting. Here, we re-
purpose the FAST SRAM cell to store sequential states across
switches and use two-phased switching to ripple states through
a series of cells, thus implementing a finite state machine
(FSM). We then leverage this FSM to perform in-situ synaptic
inference and STDP learning rules. Our key contributions are:

• We present TNN-CIM, the first work towards compute-in-
memory implementation of TNNs, wherein the synaptic
crossbar with STDP is fully implemented in SRAM.

• As part of synaptic inference, TNN-CIM proposes a novel
Ripple-Flip Counter to implement binary counting within
SRAM, with arbitrary powers-of-2 count values. We

Preprint of paper from AICAS 2024, Abu Dhabi, April 2024.

Fig. 2: Ripple-Flip Counter: 3-bit weight is shown where each
bit is implemented in an SRAM cell consisting of additional
two transmission gate switches controlled by PHI/PHID sig-
nals and a tri-state inverter that flips the cell value based on
the “flip” status of the cell to the right. Example shows weight
counting down from 6 to 5 through rippled flipping of bits.

believe such sequential counting implemented in SRAM
without any adder is novel, to the best of our knowledge.

• Along with synaptic inference compute, TNN-CIM im-
plements in-situ STDP-based unsupervised learning with
which all the synapses in the crossbar can be simultane-
ously and locally updated in every compute cycle.

• Compared to previous TNN implementations [6], [8],
TNN-CIM provides improvements of 1.3x, 1.4x and 1.7x,
in power, performance and area, respectively.

• Parameterized equations to assess transistor count com-
plexity scaling of TNN-CIM synaptic arrays are provided.

Section II describes circuit-level design of the key compo-
nents of the proposed SRAM-based TNN-CIM. Experimental
framework and hardware complexity analysis are presented in
Section III, followed by conclusions in Section IV.

II. TNN-CIM: SRAM SYNAPSE IMPLEMENTATION

This section presents the key components of TNN-CIM,
starting with the Ripple-Flip Counter design, followed by
implementation of synaptic inference utilizing this counter and
finally synaptic learning algorithm (STDP) implementation.
Minor circuit details are omitted from schematics for brevity.

A. Ripple-Flip Counter FSM

Prior SRAM CIM works have focused exclusively on im-
plementing combinational logic such as search, shift, add, and
multiply. Here, we propose an SRAM design that leverages
FAST [13] switches to store different states and implement
sequential counting (Figure 2). FAST SRAM uses a peripheral
1-bit adder to perform addition in N clock cycles (where N
is the bitwidth of the stored value). While this can be used
to implement counting, it takes multiple cycles to update its
count by 1. In contrast, the key mechanism in TNN-CIM is to

Fig. 3: RNL Readout Cell: Pull-down circuit sets PRE RNL

to 1 at the beginning of gamma period for non-zero synaptic
weight. Pull-up network resets PRE RNL to 0 when weight
transitions from 0 to 7 by leveraging the decoupled states
across all 3 counter cells. PRE RNL is latched using a custom
SRAM-type cell with one switch. Final RNL output is set to
1 if PRE RNL is high and input spike is asserted.

perform upcount (or downcount) by rippling bit flips from LSB
to MSB within a single clock cycle. For example, downcount
by 1 simply flips all ‘0’s to ‘1’s from LSB to MSB until a ‘1’ is
reached at which point that ‘1’ is flipped to ‘0’ and no further
rippling occurs (see Figure 2). Similarly, upcount by 1 entails
flipping all ‘1’s to ‘0’s from LSB to MSB until a ‘0’ is reached.
Note that this mechanism easily enables upcount/downcount
by arbitrary powers-of-2 by just changing the starting bit for
rippling (count by 2 starts from the second bit, i.e., bit to the
left of LSB and so on). To implement this in SRAM, a bit has
to know whether its neighbor to the right has been flipped or
not. This can be done by carefully re-purposing the decoupled
states across the switches within each cell, as explained next.

Figure 2 shows a 3-bit weight counter where each counter
cell incorporates two transmission gate switches and a tri-
state inverter in addition to the traditional 6T configuration.
In contrast to FAST that uses three phases, we use only two
phases wherein the transmission gate switches are controlled
by PHI and delayed PHID (�2 and �2d as in FAST), which
are asserted in the first half of clock cycle and de-asserted in
the second half. The switches are opened before performing
the operation (“shift” in case of FAST; “downcount” in our
case), and once finished, PHI switch closes first followed by
the PHID switch. To downcount by 1, the LSB cell W[0] is
flipped via the tri-state inverter when an input spike INP arrives
and PHID switch is open (PHID b is set). This triggers a chain
reaction that ripples to the left, all within the same clock cycle.

Now, W[1] only needs to flip if W[0] flipped from 0 to 1.
Note, if the bit to the right didn’t flip or flipped from 1 to 0, it
implies the end of rippling. This “flip” status is indicated by
both P0 and R0 nodes of W[0] simultaneously having a value
of 1. Also, this is possible only if the switches are open. This

Fig. 4: STDP: Custom CMOS gates to increment/decrement as
per STDP cases 1 (capture), 2 (backoff), 3 (search), 4 (backoff)
in Table I. B CAP, B SCH, B BCK, B MIN are Bernoulli
random variables to regulate corresponding stochastic updates.
F W is stabilization function [8]. X/Z are input/output spikes.

is depicted in the control signals of W[1]’s tri-state inverter. A
similar mechanism applies for all the bits to the left. Note that
this counter naturally wraps around to 7 from 0, as is needed
for RNL response function generation. This is described next.

B. Synaptic Inference (Response Function Readout)

As proposed in [8], synaptic inference generates a unary
readout of ramp-no-leak (RNL) response function based on
the weight counter state (i.e., the weight value). RNL output
is set to 1 when an input spike arrives at a synapse with
non-zero weight (at which point weight counter also starts
decrementing), and it then gets reset to 0 when the weight
counter wraps around to 7 from 0 (for 3-bit weight). This sets
the RNL output to 1 for as many cycles as the synaptic weight
value. We implement this as a “readout” cell as follows.

For every 3-bit synaptic weight consisting of 3 counter cells
(Figure 2), there exists one readout cell (Figure 3). As in [8],
a gamma period denotes the duration of one synaptic learning
plus inference compute. GRST is a signal that is asserted only
for one cycle at the beginning of every gamma period. As
shown in Figure 3, it consists of a custom tri-state circuit that
sets or resets PRE RNL which is latched in a set of two cross-
coupled inverters with a transmission gate switch. PRE RNL

is set to 1 at the beginning of gamma period only if the weight
value is non-zero (indicated by P2, P1 and P0), else it remains
at zero. In the presence of an input spike, RNL output is set
to 1 if PRE RNL is asserted. PRE RNL and thereby RNL are
both de-asserted when weight counter transitions from 0 to
7 which is implemented by the pull-up circuit, leveraging the
decoupled states across the switches within the 3 counter cells.
Once PRE RNL is reset to 0, it can only be set in the next
gamma period. This ensures RNL output is asserted only until
weight counter counts down to 0 in presence of an input spike.

C. Synaptic Learning (STDP)

The STDP unsupervised learning logic (Figure 4) generates
two control signals, STDP INC and STDP DEC, to increment

Case Input Conditions Weight Update
1. Capture X 6= 1; X Z �w = +B CAP ⇤max(F W,B MIN)
2. Backoff Z 6= 1 X > Z �w = �B BCK ⇤max(F W,B MIN)
3. Search X 6= 1; Z = 1 �w = +B SCH

4. Backoff X = 1; Z 6= 1 �w = �B BCK ⇤max(F W,B MIN)
- X = 1; Z = 1 �w = 0

TABLE I: STDP update rules (from [8]) directly implemented
in TNN-CIM, consisting of four cases depending on the pres-
ence/absence/relative timings of input (X)/output (Z) spikes.

TABLE II: TNN-CIM Transistor Count (TC) evaluation of a
single synapse with bitwidth b based on its key components.

Component b-bit Synapse pxq Synaptic Array
Ripple-Flip Counter 18b+ 6 (18b+ 6) ⇤ pq

RNL Readout 3b+ 13 (3b+ 13) ⇤ pq
STDP 2b+2 + 2b+ 76 (2b+2 + 2b+ 76) ⇤ pq

Total 2b+2 + 23b+ 95 (2b+2 + 23b+ 95) ⇤ pq

or decrement the weight counter by 1. TNN-CIM directly
implements the four STDP cases listed in Table I as noted
by the green text in Figure 4 (fifth case is implicit). Com-
pared to previous TNN STDP implementations, our STDP
implementation incorporates a key optimization. Each counter
cell in Figure 2 that natively performs decrement needs ad-
ditional transistors to support increment due to STDP. This
overhead is avoided by ensuring the counter wraps around to
its (original value + 1) during RNL readout (i.e., downcount
for only 7 instead of 8 cycles for 3-bit weight). As a result,
during the STDP cycle, high STDP INC implies no change,
high STDP DEC implies decrement by 2, and neither set
high implies decrement by 1 (this restores original weight
from previous gamma period before current gamma’s RNL
compute begins). Thus, we avoid having to perform any
explicit increment. Note that both STDP INC and STDP DEC
cannot be set high simultaneously. In addition to the circuit
shown in Figure 4, we also use custom latches (highlighted
in red in Figure 3) to generate signals such as X LTE Z
(X Z) and X GT Z (X > Z). Thus, this STDP logic
implementation localized for every set of 3 counter cells
(representing 3-bit weight) enables TNN-CIM to perform in-

situ online continuous learning within the SRAM array.

III. EVALUATION AND RESULTS

This section evaluates the proposed TNN-CIM SRAM-
based synaptic array against the baseline flipflop-based mi-
croarchitecture in [8]. Two types of evaluation are presented:
1) transistor count analysis and parameterized equations to
assess hardware complexity scaling of TNN-CIM, and 2) 45
nm CMOS power-performance-area (PPA) for three synaptic
array sizes - two sizes 64x8, 128x10 are adopted from [8] and
96x2 from [7] targeting unsupervised ECG signal clustering.

A. Transistor Count Evaluation

We derive transistor count equations based on the bitwidth
b of each synapse, and the synaptic array size pxq with total
synapse count p⇤q (Figure 1). Table II provides the parameter-
ized equations for a single synapse and a pxq synaptic array,
segregated into the three key components. These equations

Fig. 5: Transistor Count Breakdown for a Synapse: STDP
(60%), counter (30%), and readout (10%). Total transistor
count is shown at the top of the bar for each bitwidth.

Fig. 6: Transistor Count scaling relative to total synapse count
(pxq) and bitwidth (b) of synaptic weights.

can be used to assess transistor count, and thereby area and
leakage power, for arbitrarily configured TNN-CIM array.

Figures 5 illustrates the breakdown of transistor count for
a single synapse across varying bitwidths (1 to 8 bits). Note
that prior TNN works only present hardware complexity for
3-bit synapses. Each 3-bit synapse in TNN-CIM consumes
196 transistors (less than half of the transistor count in [8]).
It can be seen from Figure 5 that STDP scales exponentially
with bitwidth and experiences a sharp increase for 7 and 8
bits, thereby suggesting a reasonable maximum bitwidth of
6. In contrast, counter and readout scale much better (linear)
throughout 1 to 8 bits. Figure 6 illustrates the linear scaling
of transistor count with increasing total synapse count across
1 to 4 bits (from neuroscience, only 3-4 bits are needed).

Key Takeaway: STDP consumes majority (60%) of synap-
tic complexity, followed by counter (30%) and readout (10%).
STDP’s overhead (esp., dynamic power) can be substantially
mitigated once weights converge (due to infrequent updates).

B. PPA Evaluation and ECG Signal Clustering Performance

Table III provides 45nm PPA for three TNN-CIM synaptic
arrays (b=3 bits) and compares them against corresponding
flipflop-based baselines in [8]. Baseline area, power values are
scaled to reflect just the synaptic complexity alone. Computa-
tion time is not scaled as neuron body incurs the critical path in
baseline. Baseline 96x2 values are derived using characteristic
scaling equations from [8]. TNN-CIM schematics and layouts

TABLE III: 45nm PPA Comparison of TNN-CIM vs. Baseline
[8] for three synaptic array sizes (b=3 bits), including an
application-specific configuration for ECG signal clustering.

Synapses x Total Area Comp. Power
Neurons Synapses [mm2] Time [ns] [mW]

TNN-CIM
64 ⇥ 8 512 0.026 22.5 0.177

128 ⇥ 10 1280 0.066 22.5 0.443
96 ⇥ 2 (ECG) 192 0.010 22.5 0.066

Baseline [8]
64 ⇥ 8 512 0.045 28.95 0.225

128 ⇥ 10 1280 0.117 32.40 0.558
96 ⇥ 2 (ECG) 192 0.017 30.6 0.084

Fig. 7: ECG Clustering Performance (rand index) of TNN with
96x2 synaptic array vs. k-means and state-of-the-art DTCR.

are designed with 1V supply voltage and 100kHz clock using
Cadence Virtuoso with SPICE simulations to get PPA values.

Table III shows that TNN-CIM reduces area and power
by 1.7x and 1.3x respectively. In contrast to baseline imple-
mentations, TNN-CIM incurs majority of the critical path in
synaptic rippling compute (body accumulation can be simply
implemented as analog addition over shared bitline [20]), and
hence it stays constant with fixed bitwidth. Computation time
is improved by 1.4x. Area and power for TNN-CIM and
baseline scale linearly with p*q. Figure 7 shows PyTorch [21]
results (clustering rand index) on ECG200 dataset [22] for a
TNN column with 96x2 synaptic array, illustrating its efficacy
over baseline k-means and much more complex DTCR [23].

Key Takeaway: TNN-CIM significantly improves all three
PPA metrics compared to flipflop-based synaptic arrays. Com-
pared to complex ML algorithms running on CPUs and GPUs
consuming 10’s-100’sW power, TNN-CIM incurs just 66 µW,
enabling competitive ECG clustering within sub-mW power.

IV. CONCLUSION AND FUTURE WORK

Previous works have proposed microarchitecture and custom
macros for efficient implementation of TNNs using standard
CMOS and flipflop-based synapses. This work proposes an in-
SRAM implementation of TNN synaptic arrays, TNN-CIM, to
optimize the major source of hardware complexity in TNNs.
As part of TNN-CIM, a novel Ripple-Flip Counter is presented
that can also be used as a regular CIM counter outside the
context of a synapse. This counter is almost 2x more efficient
than a flipflop-based counter. TNN-CIM enables significant
improvement in power (1.3x), performance (1.4x) and area
(1.7x) compared to flipflop-based synapses. This work serves
as a first step towards a CIM solution for TNNs and can be
extended to incorporate well-researched analog addition over
bitline for neuron body accumulation and WTA inhibition, in
order to fully implement TNN columns entirely in SRAM.

REFERENCES

[1] C. D. Schuman, S. R. Kulkarni, M. Parsa, J. P. Mitchell, P. Date, and
B. Kay, “Opportunities for neuromorphic computing algorithms and
applications,” Nature Computational Science, vol. 2, no. 1, pp. 10–19,
2022.

[2] J. E. Smith, “Space-time computing with temporal neural networks,”
Synthesis Lectures on Computer Architecture, vol. 12, no. 2, pp. i–215,
2017.

[3] ——, “Space-time algebra: A model for neocortical computation,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer

Architecture (ISCA). IEEE, 2018, pp. 289–300.
[4] ——, “A temporal neural network architecture for online learning,”

arXiv preprint arXiv:2011.13844, 2020.
[5] S. Chaudhari, H. Nair, J. M. Moura, and J. P. Shen, “Unsupervised

clustering of time series signals using neuromorphic energy-efficient
temporal neural networks,” in ICASSP 2021-2021 IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2021, pp. 7873–7877.

[6] H. Nair, P. Vellaisamy, S. Bhasuthkar, and J. P. Shen, “Tnn7: A custom
macro suite for implementing highly optimized designs of neuromorphic
tnns,” in 2022 IEEE Computer Society Annual Symposium on VLSI

(ISVLSI). IEEE, 2022, pp. 152–157.
[7] J. P. Shen and H. Nair, “Cortical columns computing systems:

Microarchitecture model, functional building blocks, and design tools,”
in Neuromorphic Computing. IntechOpen, 2023, ch. 8. [Online].
Available: https://doi.org/10.5772/intechopen.110252

[8] H. Nair, J. P. Shen, and J. E. Smith, “A microarchitecture implementation
framework for online learning with temporal neural networks,” in 2021

IEEE Computer Society Annual Symposium on VLSI (ISVLSI). IEEE,
2021, pp. 266–271.

[9] C.-J. Jhang, C.-X. Xue, J.-M. Hung, F.-C. Chang, and M.-F. Chang,
“Challenges and trends of sram-based computing-in-memory for ai edge
devices,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 68, no. 5, pp. 1773–1786, 2021.

[10] S. Mittal, G. Verma, B. Kaushik, and F. A. Khanday, “A survey of sram-
based in-memory computing techniques and applications,” Journal of

Systems Architecture, vol. 119, p. 102276, 2021.
[11] S. Yu, W. Shim, X. Peng, and Y. Luo, “Rram for compute-in-memory:

From inference to training,” IEEE Transactions on Circuits and Systems

I: Regular Papers, vol. 68, no. 7, pp. 2753–2765, 2021.
[12] H. Nair, J. P. Shen, and J. E. Smith, “Direct cmos implementation of

neuromorphic temporal neural networks for sensory processing,” arXiv

preprint arXiv:2009.00457, 2020.
[13] Y. Chen, Y. Fu, M. Lee, S. George, Y. Liu, V. Narayanan, H. Yang,

and X. Li, “Fast: A fully-concurrent access sram topology for high row-
wise parallelism applications based on dynamic shift operations,” IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 70, no. 4,
pp. 1605–1609, 2022.

[14] K. Lee, J. Jeong, S. Cheon, W. Choi, and J. Park, “Bit parallel 6t sram
in-memory computing with reconfigurable bit-precision,” in 2020 57th

ACM/IEEE Design Automation Conference (DAC). IEEE, 2020, pp.
1–6.

[15] J. Wang, X. Wang, C. Eckert, A. Subramaniyan, R. Das, D. Blaauw, and
D. Sylvester, “14.2 a compute sram with bit-serial integer/floating-point
operations for programmable in-memory vector acceleration,” in 2019

IEEE International Solid-State Circuits Conference-(ISSCC). IEEE,
2019, pp. 224–226.

[16] X. Si, J.-J. Chen, Y.-N. Tu, W.-H. Huang, J.-H. Wang, Y.-C. Chiu, W.-C.
Wei, S.-Y. Wu, X. Sun, R. Liu et al., “A twin-8t sram computation-in-
memory unit-macro for multibit cnn-based ai edge processors,” IEEE

Journal of Solid-State Circuits, vol. 55, no. 1, pp. 189–202, 2019.
[17] A. Biswas and A. P. Chandrakasan, “Conv-sram: An energy-efficient

sram with in-memory dot-product computation for low-power convolu-
tional neural networks,” IEEE Journal of Solid-State Circuits, vol. 54,
no. 1, pp. 217–230, 2018.

[18] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, “X-sram: Enabling in-
memory boolean computations in cmos static random access memories,”
IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 65,
no. 12, pp. 4219–4232, 2018.

[19] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw, “A 28 nm con-
figurable memory (tcam/bcam/sram) using push-rule 6t bit cell enabling
logic-in-memory,” IEEE Journal of Solid-State Circuits, vol. 51, no. 4,
pp. 1009–1021, 2016.

[20] K. Lee, J. Kim, and J. Park, “Low-cost 7t-sram compute-in-memory
design based on bit-line charge-sharing based analog-to-digital conver-
sion,” in Proceedings of the 41st IEEE/ACM International Conference

on Computer-Aided Design, 2022, pp. 1–8.
[21] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in

neural information processing systems, vol. 32, pp. 8026––8037, 2019.
[22] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi,

C. A. Ratanamahatana, and E. Keogh, “The ucr time series archive,”
IEEE/CAA Journal of Automatica Sinica, vol. 6, no. 6, pp. 1293–1305,
2019.

[23] Q. Ma, J. Zheng, S. Li, and G. W. Cottrell, “Learning representations for
time series clustering,” in Advances in Neural Information Processing

Systems, 2019, pp. 3781–3791.

