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Abstract—Each person has a unique gait, i.e., walking style,
that can be used as a biometric for personal identification. Recent
works have demonstrated effective gait recognition using deep
neural networks, however most of these works predominantly
focus on classification accuracy rather than model efficiency.
In order to perform gait recognition using wearable devices
on the edge, it is imperative to develop highly efficient low-
power models that can be deployed on to small form-factor
devices such as microcontrollers. In this paper, we propose a
small CNN model with 4 layers that is very amenable for edge
AI deployment and realtime gait recognition. This model was
trained on a public gait dataset with 20 classes augmented with
data collected by the authors, aggregating to 24 classes in total.
Our model achieves 96.7% accuracy and consumes only 5KB
RAM with an inferencing time of 70 ms and 125mW power,
while running continuous inference on Arduino Nano 33 BLE
Sense. We successfully demonstrated realtime identification of the
authors with the model running on Arduino, thus underscoring
the efficacy and providing a proof of feasiblity for deployment
in practical systems in near future.

Index Terms—Human Gait, Biometric Identification, Inertial
Sensors, Arduino, Neuromorphic Akida, Edge AI

I. INTRODUCTION

In the field of biometric identification, traditional methods
such as fingerprint, facial recognition dominate. However, gait
analysis is fast emerging as a unique and promising approach
for identifying a person. Gait, the distinctive way an individual
walks, carries inherent characteristics that can be leveraged
for accurate non-intrusive person identification [2], [3]. Unlike
static biometrics, such as fingerprints and facial features, gait
analysis taps into the dynamic and behavioral aspects of
an individual’s movement. Every person has a distinct gait,
influenced by factors like anatomy, musculoskeletal structure,
and personal habits. This distinctiveness makes gait analysis
an intriguing and effective tool for identifying individuals in
diverse settings, ranging from surveillance and security to
healthcare and rehabilitation.

For this course project (Figure 1), we experimented on using
light-weight convolutional neural network (CNN) models for
edge-based gait detection for person identification. We perform
pre-processing of the raw gait signals and model the CNN
on the Edge Impulse framework. We use a popular gait

Fig. 1. Overall Framework

dataset and further augment it with raw data collected from
our team to train and test our model. We deploy our model
on an Arduino Nano BLE 33 board for live inference and
demonstration. We demonstrate highly accurate gait detection
through our results and performed a live demonstration to
show its efficacy. Further, we also deploy on smartphone.

Finally, we convert our CNN model to its event-based spik-
ing neural network (SNN) equivalent via Brainchip MetaTF
framework and deploy the SNN to the Brainchip Akida proces-
sor [1]. We obtain real-time power and latency measurements.

II. METHODS

This section details the methods and experimental setup un-
dertaken for this work. First, the dataset including our custom
data collection procedure is described, followed by the edge
inferencing pipeline, and finally our training methodology.

A. Dataset

We use whuGAIT dataset [4]. A total of 118 subjects
participated in the data collection process. Within this group,
20 subjects gathered data over a span of two days, generat-
ing thousands of samples each. Simultaneously, 98 subjects
undertook a more concise data collection, spanning one day
and resulting in hundreds of samples each. Each data sample
comprises both 3-axis accelerometer and 3-axis gyroscope
data, all recorded at a uniform sampling rate of 50 Hz.



Fig. 2. Raw data example from each of the 20 classes

Fig. 3. Raw data example from each of the 4 new augmented classes

Among the various sub-datasets, we focus on dataset#2,
since it consists of only 20 subjects as oppposed to 118
for simplicity, where the gait curve is divided into two-step
samples and interpolated into length 128. It consists of 49,275
samples, of which 44,339 samples are used for training and
the rest 4,936 for testing. One example of raw data from each
class is shown in Figure 2.

Further, in addition to incorporating the public dataset, we
collected data from each of the four authors, increasing the
overall class count to 24. The four custom classes augmented
to the dataset are exemplified in Figure 3. It is to be noted
that data for the first 20 classes have been collected from
IMU sensors in smartphone whereas the custom data for the
last four classes have been collected with IMU sensors in
Arduino, where the arduino while still being connected to
laptop was placed inside pant pocket while walking holding
the laptop. The data was collected for walking at multiple
paces back and forth, on carpeted as well as non-carpeted
floors for better generalization. Our final model uses spectral
feature extraction on this raw data for ease of live deployment
and demonstration, however we have also created a custom
data preprocessing pipeline as explained next.

Our initial implementation involves manually splitting the
collected data into 3-second gait segments using the visu-
alization tool provided by Edge Impulse. However, this is

Fig. 4. Mobile Phone Deployment: DCNN output

Fig. 5. Mobile Phone Deployment: Segmentation

inconvenient for collecting large amounts of data since it
requires manual data processing.

To facilitate future expansion, we also implement an au-
tomated method for segmenting gait data that involves two
steps: 1) employing a machine learning model to identify the
walking period from all activities, including running, standing,
and irregular movements, and 2) automatically splitting the
gait segments based on data patterns. It is worth noting that we
only perform such data processing during the training process
to facilitate the collection of large amounts of data and improve
the accuracy and stability of the model. During inference, we
do not need to split the data since the window is sliding, and
we can filter out non-walking data by setting a confidence
threshold. Although including a data processing module to
distinguish walking data in the inference process may improve
the accuracy of the model, we determine it is not worth the
computational cost.

We use a one-dimensional DCNN [4] model to roughly
extract walking period based on its semantic difference with
non-walking period. The result is shown in Figure 4. The
blue zigzag line represents the collected activity data, which
includes walking, stopping, and random movement in dif-
ferent directions and slopes. The green part of the straight
line indicates a walking data segment, while the red part
indicates a noise period that should be discarded. Afterwards,
the extracted walking data was segmented into fixed-length
segments to align them with other data in the training set.
We exclude some atypical stride data based on peaks with
fluctuating regularity and segment them into a series of 128-
length two-step segments, as shown in Figure 5.



Fig. 6. UMap Data Visualization

Fig. 7. FFT Parameters

B. Inferencing Pipeline

Our inferencing pipeline consists of two main components:
1) Feature Extraction: We use spectral analysis preprocess-

ing block in Edge Impulse to extract spectral features from raw
data samples. The corresponding UMap separation diagram
visualizing the clusters for all 24 classes are shown in Figure
6. The FFT parameters used are shown in Figure 7. We use
FFT analysis with FFT length of 16 on a window size of 3
sec. Figure 8 illustrates the result after filtering as well as log-
arithmic spectral power for an example sample. An interesting
observation from Figure 8 is that the gyroscope data carries
more energy than the accelerometer data. This implies that
collected gait data has richer features in angular momentum
relative to acceleration. This observation is consistent for all
data collected with Arduino. Future investigations can explore
equalizing the energy between accelerometer and gyroscope
for more uniform integration of signals.

2) Model Architecture: Our model architecture (Figure 9)
consists of 4 layers, where the first layer is a 2D Conv layer
with 32 output channels and 3x3 filters. The input consists of a
vector of 78 FFT-applied features which is reshaped to (13x6)
before passing into the Conv layer. The Conv layer is followed
by flatten, and subsequently 3 Dense layers with 256, 128 and
32 neurons respectively. The final layer is a softmax layer with
24 classes. The Conv layer extracts rich set of features from
input, which are then mapped to the output classes through
the 3 dense layers. This network was chosen after extensive
hyperparameter tuning resulting in the best tradeoff between
accuracy performance and model complexity.

Fig. 8. FFT Features

Fig. 9. Neural Network Architecture

C. Training

1) Hyperparameters: Sampling frequency for dataset col-
lection is set to 100 Hz. FFT and window size parameters are
described in previous sections. The model is trained for 20
epochs with 0.0005 learning rate. During training, 20% of the
training set is used for validation. Batch size is set to 32.

2) Challenges and Iterations: Two main challenges were
faced during the course of this work. One was hyperparameter
tuning such as window size etc. for manual data collection
as well as manual window splitting for each of the new
samples which is time-intensive. The second main challenge
was associated with logistics and deployment code for live
demonstration on Arduino. Parameters such as inferences per
second had to be precisely tuned. During live demonstration,
it was determined best for the subject to walk with the laptop
in hand, wherein the laptop is connected to Arduino inside the
pant pocket. Huge number of iterations had to be performed
to arrive at the final data collection pipeline as well as the
model architecture and training/deployment parameters.

3) Results: The trained model achieves 96.3% validation
accuracy and 96.23% testing accuracy with almost perfect
confusion matrix (Figures 10 and 11). The INT8 deployment



Fig. 10. Validation Accuracy and Confusion Matrix

Fig. 11. Testing Accuracy and Confusion Matrix

accuracy is 95.75% with inference time of 66 ms, 5.4KB RAM
usage, and 236.5KB Flash memory usage (Figures 12 and ??).
The results underscore the strong feasibility of a lightweight
model computationally powerful enough to classify 24 classes
that can easily fit into a small form factor such as Arduino.

III. DEPLOYMENT RESULTS

We performed two types of live demonstration: 1) Arduino
(main demo) and 2) smartphone. Further, we also deployed
the model offline to BrainChip Akida.

A. Deploy on Arduino Nano 33 BLE Sense

During deployment on Arduino (Figure 13), we successfully
demonstrated accurate prediction of each of the four team
members from live gait. We observed a 2 second delay from
the onset of walking to the generation of appropriate predic-
tions from the model. This overhead could be related to the
prediction smoothing function within the Arduino deployment
code and is a topic for future investigation and improvement.
However, once it starts generating predictions, the inference

Fig. 12. Deployment Metrics

Fig. 13. Arduino deployment code and output recognizing one team member
when the Arduino was placed inside their pant pocket while walking.

latency is only about 70 ms with 5KB active RAM usage.
Further, its power consumption was measured using a power
jive to be 125 mW (25 mA current at 5 V).

B. Deploy on Mobile Phone

In order to simulate real-world application scenarios, we
further experimented with deploying the model on a mobile
device. Specifically, we deployed the model on an iPhone
13 using Edge Impulse. However, for this particular mobile
device, the mobile motion sensor accessible by Edge Impulse
only has three-axis accelerometer, and gyroscopic data cannot
be retrieved. As a result, we adjusted the input features
of the model from six to three in order to accommodate
this limitation. Due to the differences in coordinate systems,
precision, and amplification between the sensors on mobile
devices and those on Arduino, the model deployed on the
phone requires training with sensor data collected from the
phone (following the same procedures as in the previous
section). For demonstration, the inference model was designed
to only recognize the gait of the mobile device owner. As
shown in Figure 14, label MyGait denotes the gait of the
phone owner; label 0 represents a stationary pattern; labels
1 and 2 are others’ gaits from the dataset. Once the mobile



Fig. 14. Mobile Phone Deployment

Fig. 15. BrainChip Akida Inference Metrics

device owner starts walking steadily, the model is capable of
identifying the identity based on the gait.

C. Deploy on BrainChip Akida

As a third alternative, we convert the trained CNN to an
equivalent SNN using BrainChip MetaTF and assess inference
metrics on remotely accessible BrainChip Akida processors
(physically located in CMU’s Silicon Valley campus). As
shown in Figure 15, the converted SNN mapped to BrainChip
Akida processor consumes about 880 mW with an average
framerate of 22.73 fps. The inference energy consumed is
45.92 mJ/frame. This is only a preliminary analysis that needs
deeper investigation for power and energy optimization.

IV. DISCUSSION

A. BLERP Model

BLERP offers a multi-dimensional perspective to assess the
advantages and trade-offs of edge-based solutions in various
application domains, as explained below.

Bandwidth: In gait analysis, it is crucial to collect and
analyze large amounts of data to track and monitor the move-
ments of the joints accurately. However, communicating all
this data to a cloud server can be bandwidth-intensive. Edge-
based models can operate on local data, reducing the amount
of data transmission and alleviating bandwidth pressure.

Latency: Since gait recognition is used to authenticate the
user, real-time sensing is important, and transmitting data to
and from the cloud would incur additional latency. Processing
the data locally on the device mitigates this issue, allowing
the solution to collect data and perform analysis in real time.

Economics: Gait analysis can leverage inexpensive IMU
sensors, pre-existing in most wearables. TinyML serves as
a cost-effective solution, as it allows for the deployment of
machine learning models on low-cost, low-power devices.

Reliability: Human gait has been demonstrated to be diffi-
cult to impersonate, thereby making gait recognition relatively
robust to biometric duplication and more reliable than other
biometric approaches in terms of security. Further, edge pro-
cessing enables the solution to reliably deliver results, even in
areas with poor network connectivity.

Privacy: Wearable IMU sensors can be used to collect data
without invading user privacy and operate on the edge without
sending sensitive data to cloud, ensuring data privacy.

B. Ethical Challenges

Privacy: Although processing data locally on a device can
help protect the privacy of bioinformation, it is still important
to ensure that the data collected is not used to invade user
privacy. This includes taking measures to ensure that the data
cannot be traced back to a specific individual or used for
purposes other than real-time gait analysis.

Informed Consent: When using wearable IMU sensors to
collect gait data, obtaining informed consent from the partic-
ipants is important. This includes providing clear information
about the purpose of the data collection, how the data will be
used, and who will have access to the data.

Bias: Bias can occur when the dataset used to train the
algorithm does not represent the population it intends to serve
or contains unintentional bias. This can lead to inaccurate
or unfair results for certain groups, particularly individuals
with different body types or physical disabilities . To mitigate
these challenges, it is important to prioritize diverse and rep-
resentative datasets, actively collecting data from individuals
of different ages, ethnicities, body types, and abilities.

V. CONCLUSION

Our work serves as a feasibility proof for deployment of
very efficient yet highly effective lightweight models on to
small form factor edge devices such as Arduino, smartphone,
etc. to identify person using their gait. Our model trained on
a standard dataset augmented with the team members’ gait
data is able to achieve 96% accuracy on 24 classes, while
consuming only 70 ms inferencing time, 5 KB RAM, and 125
mW power. Further, our work serves as a first step towards
deploying a gait recognition model on a neuromorphic device
such as BrainChip Akida. Future investigation will focus
heavily on optimizing the model, adding data for physically
challenged as well as multiple other people for diversification
and bias reduction, and optimizing the neuromorphic model.
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