
J. E. Smith 1 10/26/2023

Neuromorphic Online Clustering and Classification

J. E. Smith

University of Wisconsin-Madison (Emeritus)

October 26, 2023

Abstract

The bottom two layers of a neuromorphic architecture are designed and shown to be capable of online

clustering and supervised classification. An active spiking dendrite model is used, and a single dendritic

segment performs essentially the same function as a classic integrate-and-fire point neuron. A single

dendrite is then composed of multiple segments and is capable of online clustering. Although this work

focuses primarily on dendrite functionality, a multi-point neuron can be formed by combining multiple

dendrites. To demonstrate its clustering capability, a dendrite is applied to spike sorting – an important

component of brain-computer interface applications. Supervised online classification is implemented as a

network composed of multiple dendrites and a simple voting mechanism. The dendrites operate

independently and in parallel. The network learns in an online fashion and can adapt to macro-level

changes in the input stream.

Achieving brain-like capabilities, efficiencies, and adaptability will require a significantly different

approach than conventional deep networks that learn via compute-intensive back propagation. The model

described herein may serve as the foundation for such an approach.

1. Introduction

The long term goal of neuromorphic computer architecture is to develop a large-scale computing device

that can achieve brain-like abilities in a brain-like manner. Research toward such an ambitious goal will

progress naturally as a sequence of steps with initial computing devices having cognitive abilities that fall

far short of true thinking but can still perform useful functions efficiently and in a brain-like way. Two

such functions are clustering and classification – functions at the root of modern-day machine learning

and the topic of this document.

The approach taken is to reduce biological behavior to a plausible mathematical computing model (an

architecture) that leads to simple, efficient implementations. The actual reduction process that leads to the

proposed architecture is not covered in this document, only the resulting mathematical model. Briefly, it

is a weighted synapse model based on active dendrites [15] that sum weighted synaptic inputs to produce

outputs. Computing networks are constructed of active dendrites combined with other basic neural

components.

An important aspect of brain-like behavior is online operation: each cycle, the computing model takes an

input from an input stream, performs inference and update operations, and produces a new output as part

of an ongoing output stream.

1.1 Clustering

With online clustering, a stream of input patterns (vectors) is applied, and a single dendrite groups them

according to similarity. Each cluster of similar patterns is associated with a cluster identifier. As the

inputs are streamed in, the network first infers the cluster to which the current input pattern best belongs

and provides the cluster identifier as the output. Then the current input pattern is assimilated into the

learned sequence of input patterns via an update operation that adjusts synaptic weights contained in the

active dendrites. Inference is performed every cycle to produce an output. Weight updates can be turned

on and off by a controlling agent.

J. E. Smith 2 10/26/2023

1.2 Classification

Classification is performed by multiple dendrites that learn via online supervision. Generically speaking,

input patterns are grouped into classes and each class has a label. There are as many dendrites as there

are labels. When a streamed input pattern is applied, the network first infers (predicts) its label and

provides it as the output. The correct label is then given as a supervisory input, and an update function

adjusts synaptic weights in the clustering dendrites accordingly. As with clustering, update can be turned

on and off by a controlling agent. In practice, the agent will typically turn on update for some initial

sequence of input patterns (to warm up, or train, the weights), and then turn off training when labels are

unavailable. When training is turned off, inference-only operation predicts the label for each input based

on what it learned during supervised training, i.e., it classifies the input pattern. In general, training can

be periodically turned on and off by the agent as the system runs.

1.3 Spiking Neural Networks

Spiking Neural Network (SNN) research spans more than three decades, and the set of proposed networks

generally referred to as “SNNs” is huge and widely diverse. Just about the only thing they all have in

common is that inter-neuron communication is based on “spikes”, typically represented as binary 1s, with

a non-spike being a binary 0. The networks studied in this document belong to a specific class of SNNs

satisfying the following criteria.

1) The presence (or absence) of individual spikes conveys information, rather than the rate at

which spikes are emitted.

2) The basic computational function is that of a point neuron (see Figure 1), although in this work

this function is performed by a single dendritic segment.

3) Synaptic weights are updated via localized Hebbian learning rules.

4) Clustering is an essential building block function that is implemented by combining parallel

point neurons (parallel segments in this work) with a winner-take-all (WTA) circuit.

5) Network operation is synchronized, with a single layer of segment/WTA functionality per

synchronization cycle.

SNNs having various subsets of these features have been proposed and studied for decades. Thus, the

network architecture proposed here is based on existing concepts (sometimes long existing) combined in

new and different ways.

Figure 1. A classical point neuron. The spikes (1s) in a binary input vector are multiplied by

associated synaptic weights and then summed. If the sum (dot product) reaches a threshold θ, then

the output is a 1; else it is 0. There are more complex point neuron models, but the key feature they

have in common is a single summation point.

xi · wi

w1= 3

x2

x1

x4

z

binary

inputs

synaptic

weights

4

2

1

9

0x3 1

1

binary

output

1

4

3

2

 q
1

0

q=6

J. E. Smith 3 10/26/2023

1.4 Active Dendrites

Although the functionality of the classical point neuron is basic to the model, the functional element in the

model is not referred to as a “neuron”, rather it is a dendritic “segment”. In this work, a multi-point

neuron model is composed of multiple active dendrites [15] each composed of multiple segments. This

multi-point neuron model is both more realistic and computationally more powerful than the classical

point neuron. The difference between a point neuron and a multi-point neuron is analogous to the

difference between an AND gate and a multiplexor.

1.5 Document Overview

Just as with conventional computer systems, a neuromorphic architecture can be organized as a

hierarchical stack. Figure 2 shows the stack for a specific part of the brain: the neocortex. Other parts of

the brain have architectures that share at least the lower levels of the stack, and this particular document is

focused only on the lower levels. Higher levels (up to a single macrocolumn) are covered in another

document [9].

Figure 2. Architecture stack for the neocortex. The lower layers, at least up to the neuron layer, are

also part of the architecture for other parts of the brain. In this document only the segment and

dendrite layers are covered in detail.

Preliminaries regarding clustering are covered in Section 2. Then in Section 3 a single segment is shown

to perform essentially the same function as a classic integrate-and-fire point neuron. In the active dendrite

model (Section 4), a single dendrite is composed of multiple segments, each of which has multiple

synaptic inputs. In Section 5, a single dendrite is shown to be capable of online clustering. A clustering

network is developed and applied to spike sorting – an important component of brain-computer interface

(BCI) applications. In Section 6, supervised online classification is implemented as a network composed

of multiple, parallel dendrites and a simple tallying mechanism. The multiple dendrites operate

independently and in parallel. The network learns in an online fashion and can adapt to macro-level

changes in the input stream.

Macrocolumns

Lobes

Region Hierarchy

Neocortex

Minicolumns

Neurons

Biological Neurons

Dendrites

Segments

J. E. Smith 4 10/26/2023

2. Preliminaries

2.1 Data Representation

Information is communicated as scalars, vectors, and 2-dimensional arrays, and there are two data types:

bits and ints (integers).

Bit vectors are typically used at communication interfaces, and int vectors are used for certain

computations intrinsic to the model. Bit vectors model neural spike volleys where a “1” indicates the

presence of a spike. In the model, bit vectors encode information in two ways.

1) To specify sets of features:

1 → feature is present.

0 → feature is not present.

Example: [01011] → features 2, 4, and 5 are present

2) Unary encoded values:

The value being encoded is the 1’s count.

Example: [01101], [11100],[00111] all encode “3”

2.2 Clustering

Clustering partitions a set of patterns into groups – clusters. When forming clusters the objective is that

the members of a cluster are more similar to each other than members of other clusters. There are many

clustering methods based on different definitions of “similarity”.

For our purposes, clustering begins with an ordered multi-set of row vectors (patterns), P = [x1, x2, ..., x|P|],

where a given vector may appear one or more times in P. Clusters are disjoint subsets of P. The

members of P are ordered because we are implementing online clustering methods where the order of

applied inputs is important.

The centroid c of cluster C is a row vector consisting of component-wise averages over the members of

the cluster. In this work, when centroids are computed directly (for evaluating metrics), the arithmetic

mean is used. To be more precise, say cluster C is composed of p row vectors each of size q. These can

be represented as a p×q array x1:p
1:q Then the centroid c is defined as a row vector where cj = (Σi=1:p x

i
j)/p.

Of interest here are clustering methods that take an input stream of patterns (encoded as bit vectors) and

compute a set of centroids via an online learning process. Given a set of centroids, an inference process

computes distances between a given input pattern and each of the centroids, thereby identifying the

nearest centroid, i.e. the one most similar to patterns belonging to the associated cluster. The output of

this inference process is a cluster identifier (CId). With online clustering, the training process interleaved

with inference. Consequently, if input similarities shift over time, the centroids, and therefore the

clusters, also shift to reflect the changes.

In this document, the sum of absolute differences (sad) is used for computing distances. Given two row

vectors x and y, each having q components, sad(x,y) = Σi=1:q | xi - yi |; this is a rectilinear (Manhattan)

distance metric. Given a set of p clusters C1:p and their associated centroids c1:p
 , the nearest centroid for

vector x is ci
 such that sad(x, ci) ≤ sad(x , c

 j) for all i ≠ j.

An average distance metric for a given set of clusters and associated centroids is found by averaging the

distances between the patterns and their associated centroids.

As a basis for performance comparisons, the k-means algorithm [20] is used. It is an offline epoch-based

compute-intensive process that begins with a set of k randomly or heuristically placed centroids and

repeats 2-step epochs: 1) determine a new set of clusters based on nearest centroids, 2) determine a new

set of centroids for these clusters. These two steps repeat until the centroids converge. For a given set of

J. E. Smith 5 10/26/2023

clusters and associated centroids, the k-means convergence metric is the fraction of patterns that are

nearest to the centroid of their currently assigned cluster. The k-means algorithm, as usually described,

converges to 1.0. However, achieving a convergence value slightly less than 1 (say .98) is adequate in

many situations and is computationally more expedient.

2.3 Nearest Centroid Computation

In this work, the components of a centroid are approximated by synaptic weights, and the inference

process determines the nearest centroid based on the synaptic weights. An essential part of the method is

that bit vectors being clustered generally have a constant weight1, i.e., they all have the same number of

ones. However, as a practical matter, some small variations from the constant weight may occur.

Assuming constant weight vectors simplifies the determination of the nearest centroid, especially if the

vectors are also sparse. The mathematical basis for this simplification is outlined in this section.

Let cluster C be composed of p row vectors each of size q. These can be represented as a p×q array x1:p
1:q

Then the centroid c is defined as a row vector where cj = (Σi=1:p x
i
j)/p. Summing all the components of a

centroid yields

Σj=1:q cj = (Σj=1:q Σi=1:p x ij)/p.

The summations can be interchanged so

Σj=1:q cj = (Σi=1:p Σj=1:q x ij)/p.

If each row vector has exactly m ones, then Σj=1:q x
i
j = m and summing over all row vectors yields

Σi=1:p Σj=1:q x
i
j = mp.

Consequently, using substitution

 Σj=1:q cj = mp /p = m.

 (From here on, all summations are over j=1:q). Given bit vector x,

Σ cj = Σ xj cj + Σ ~xj cj = m.

Break sad (x, c) into two parts – one with spikes (xj =1) and one without (~ xj= 1):

sad(x, c) = Σ xj | xj – cj | + Σ ~xj | xj – cj |

Σ xj | xj – cj | = Σ xj - Σ xj cj = m - Σ xj cj

Σ ~xj | xj – cj | = Σ ~xj cj = m - Σ xj cj because m = Σ xj cj + Σ ~xj cj

Then

sad(x, c) = 2(m - Σ xj cj).

Consequently, the sad is minimized when Σ xj cj is maximized. This means that to determine the nearest

centroid, one need only compute Σ xj cj for each centroid because the centroid that yields the maximum

Σxj cj is the nearest centroid.

3. Segments

The segment is a fundamental computational unit (Figure 3). The schematic notation is described in

Appendix 1. A segment is akin to a classic spiking point neuron except the output is not a spike

determined by a threshold value. Rather, the output is the result of the dot product. A threshold value (θ)

is applied, nevertheless, so if the dot product is less than the threshold the output value is 0.

1 To resolve ambiguity: this usage of “weight” is different from the synaptic “weight”.

J. E. Smith 6 10/26/2023

Figure 3. Schematic for a segment. Input x is communicated as a p bit row vector. Weights, w, are

expressed as a p int column vector. When a bit vector is applied to the synapses, the product is an

int scalar that is the body potential for the given segment. If the potential reaches the threshold

value θ, the value of the potential is passed through to the output z. Observe that when

multiplication takes place, one of the operands is always a bit or a bit vector, thereby simplifying the

“multiplication” significantly.

4. Dendrites

Dendrites perform an (approximate) clustering function. The method is simple and amenable to online,

localized learning. Before defining dendrite function precisely, a less formal illustration of clustering

performed by a trained dendrite is in Figure 4.

Figure 4. An illustration of dendrite clustering. Inputs from bit vector x are applied to a synaptic

crossbar. The maximum synaptic weight is 4, and synapses with 0 weight are not shown to reduce

clutter. A bimodal weight distribution is typical. Each of the six segments performs a dot product

x ∙ weights and produces an int output value (this value is the segment’s potential). Then, provided

the potential reaches the threshold of θ = 6, the maximum potential (12 in this case) is passed

through to winner-take-all (WTA) output z4 ; all the other components of vector z are 0.

X +

θ

X

1

1
x

segment

p

1

1

bit

int

int

bit

int
z

w p/1

int

θ = 6
0

0

0

W
T
A

1

1

1

0

0

0

0

0

12

8

8

0

0

0

12

0

0

J. E. Smith 7 10/26/2023

4.1.1 Winner Take All (WTA) Inhibition

The schematic for WTA inhibition is in Figure 5. If there is a tie for the maximum value, and with low

precision integers ties will be relatively common, then the tie must be broken by choosing one. In the

model simulated later, the tying input with the lowest index (subscript) is selected. This is a systematic

method that makes simulator debugging easier. However, in general the “winner” of a tie can be

arbitrarily chosen, including pseudo-random selection.

Figure 5. Schematic for WTA inhibition. First, the maximum value of a size q int vector x is found.

Then the “= =” block selects the input positions that have the maximum value. If there is more

than one (a tie), then a tie break mechanism selects one. The output vector z contains 0s in every

component except the component with the maximum x value, in that component z is assigned the

value in x.

In general, the top n values can be selected via n-WTA. In this document, 1-WTA is commonly used, so

unless stated otherwise, the standalone “WTA” implies 1-WTA.

4.1.2 Active Dendrites

The schematic for an active dendrite is given in Figure 6. It combines parallel segments with WTA and

includes an enable signal. Given a set of synaptic weights, a dendrite partitions input patterns into

clusters. In the active dendrite model as used here, the input patterns to be clustered are applied to distal

inputs (D in the schematic) and the proximal input (P) acts as an enable.

All segments receive the same input, x, via a synaptic crossbar. x is a p component row vector and w1:p
1:q

is a p×q weight matrix. The vector x is multiplied by the weight matrix w. The product, a q component

vector, passes through WTA inhibition. Only the maximum component of the product is passed through

to the WTA outputs (as long as it satisfies the threshold θ).

The output vector z is coded as a 1-hot int2. The position of the 1-hot value indicates the cluster to which

the input pattern belongs, i.e. the CId, and the value indicates how close the input is to the centroid: a

higher potential indicates the input is closer to the centroid.

In this model, the weights are an approximation of the centroids (multiplied by wmax). This will be

illustrated later (Figure 17). As shown in Section 2.3, finding the nearest centroid for input x is equivalent

to finding the centroid with the maximum, Σ xj cj . Using the weights as approximate centroids, the

dendrite computes the maximum Σ xj wj, thereby yielding the nearest approximate centroid.

2 The term “one-hot” usually refers to a single 1 bit. However, in this work the concept is extended so a vector with

a single non-zero int is also “one-hot”.

max

1x

q==
tie

break

WTA

q

q

X
q

q

z

int int

bit bit

int

J. E. Smith 8 10/26/2023

Figure 6. Schematic for the dendrite inference function (IF) in detail. Update function (UP) detail is

in Figure 9. An active dendrite contains q segments that operate on distal inputs (D). A 1-bit

proximal input (P) acts as an enable signal, implemented as a min operation. The result is

multiplied by a p × q synaptic weight matrix. The resulting q int vector is checked against the

threshold θ, producing a q bit vector. This bit vector when multiplied by the int vector selects all the

values reaching the threshold. WTA inhibition finishes the job by passing through the largest of

the values to output A; all other WTA outputs are 0. Note that for the update function (Figure 8),

the int output A is binarized to bits, i.e., spikes.

Although one could potentially model more than one proximal input per dendrite, in the model developed

thus far there is only one.

As one interpretation, the distal input spikes define a specific context, and a proximal spike indicates a

specific object or feature that is present at the specified context. In another interpretation, a distal input

defines a pattern, and a proximal spike indicates an associated label. Often the distal input vector is the

concatenation of multiple vectors, each being associated with some aspect of the context.

In summary: each of the segments is associated with an approximate cluster centroid, the synaptic weights

approximate the centroid values, and the inference process determines the CId of the nearest approximate

centroid.

Online Learning

Spike dependent plasticity (SDP) is a binarized version of the classical Spike Timing Dependent

Plasticity (STDP)[10][13]. See Table 1.

Table 1. SDP update functions.

xi zj weight update limitation

0 0 Δwi
j = 0

0 1 Δ wi
j = -backoff wi

j ≥ 0

1 0 Δ wi
j = +search wi

j ≤ w0

1 1 Δ wi
j = +capture wi

j ≤ wmax

SDP is performed by each synapse and updates the synaptic weight by an amount that depends on the

presence or absence of a synapse’s input spike and the output spike of the synapse’s associated dendrite

(after it has been binarized). The SDP update function for weight wi
j in Table 1 takes bit xi as one input

and bit zj as the other. The output is an int Δwi
j indicating an amount by which wi

j should be updated.

For backoff and capture updates, weights saturate at 0 and wmax. For the search update, there is a lower

saturating weight w0.

X+

θ

X
WTA

1

x

z

Dendrite(IF)

w
p/q

p

bit

int

int

bit

int
int int

q

q

q q

D

AP
y

min
1
bit

p

bit

J. E. Smith 9 10/26/2023

Cluster Formation

The SDP parameters backoff, capture, and search control the formation and evolution of clusters. In

particular, the relative values of capture and backoff affect the distance (or alternatively overlap) between

members of the same cluster. It is unlikely the optimal relationship can be reduced to a simple

mathematical expression that holds for realistic data, so capture and backoff are determined via offline

parameter sweeps using data that is similar to the data to be observed in practice.

Nevertheless, it is useful to consider parameter relationships in a qualitative way by studying individual

cases. For example, once a cluster is established and a new input vector is applied, whether the new

vector should become part of the existing cluster or should begin a new cluster is related to the overlap

between the vectors. If a high amount of overlap (low distance) is desired then the capture and backoff

parameters should be biased toward starting a new cluster. If a low amount of overlap is sufficient, then

the parameters should be biased toward joining the existing cluster.

To illustrate this, consider the situation where all the input bit vectors contain exactly m spikes. Define

the overlap to be the number of bits that two vectors have in common. Assume capture is fixed at 1 and

derive a relationship between overlap and backoff. Say two vectors with a given overlap are

consecutively applied to an un-trained system with weights initialized to a baseline value w0. As shown in

[9] they will map to the same cluster if

backoff < overlap/(m-overlap).

Otherwise, they will be placed in different clusters. See the example in Figure 7. Qualitatively,

increasing backoff will tend to increase the amount of overlap required for two vectors to be placed in the

same cluster: higher backoffs will tend to create more clusters.

J. E. Smith 10 10/26/2023

Figure 7. Two examples of the way capture and backoff influence cluster formation. In both the left

and right columns, three consecutive patterns are applied, each having 6 bits set to 1 (m = 6). If it is

desired that two patterns go into the same cluster when the overlap is 4 or more, then backoff <

4/(6-4) = 2. In the left column, backoff = 1, so overlap of 4 or more will map patterns to the same

cluster. Three patterns are applied along the leftmost column. There are two clusters with synaptic

weights initialized to w0 = 5. When the first pattern is applied (upper left), the dot products for

both clusters are 30, a tie. The first cluster is arbitrarily selected to fire an output spike and update

its synaptic weights. The updated weights are shown to the right of the dot products. The next

input pattern overlaps with the first in 4 bit positions, so it should go into the same cluster. The dot

products are 32 and 30, so the first cluster is selected by WTA. The third pattern has an overlap of

less than 4 with respect to the previous 2. Consequently, the dot products are 26 and 30, and the

third pattern goes into a new cluster. For the example in the right column, backoff = 3;

consequently an overlap > 4 will be required if the first and second patterns are to map to the same

cluster. In the example, the overlap is not >4, so the two patterns map into different clusters.

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 1 0
1 0 0 0 0 1

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5

4 4 4 4 4 4
4 4 4 4 4 4
4 4 4 6 4 4
4 4 6 4 4 4
4 6 4 4 6 4
6 4 4 4 4 6

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 0 0

4 4 4 4 4 4
4 4 4 4 4 4
4 4 4 6 4 4
4 4 6 4 4 4
4 6 4 4 6 4
6 4 4 4 4 6

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5

32

30

30

30

3 3 3 3 3 3
3 3 3 3 3 3
3 3 3 7 3 3
3 3 7 3 5 3
3 7 3 3 5 5
7 3 3 3 3 5

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1
0 0 0 0 0 0

3 3 3 3 3 3
3 3 3 3 3 3
3 3 3 7 3 3
3 3 7 3 5 3
3 7 3 3 5 5
7 3 3 3 3 5

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5

4 4 4 4 4 4
4 4 4 4 4 4
4 4 6 6 4 4
4 6 4 4 6 4
6 4 4 4 4 6
4 4 4 4 4 4

3 3 3 3 3 3
3 3 3 3 3 3
3 3 3 7 3 3
3 3 7 3 5 3
3 7 3 3 5 5
7 3 3 3 3 5

30

26

Input Pattern Weights Dot
Product

Updated
Weights

wmax = 8 w0 = 5 capture = 1 backoff = 1

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 1 0
1 0 0 0 0 1

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 1 0
0 1 0 0 0 1
1 0 0 0 0 0

5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5
5 5 5 5 5 5

28

30

30

30

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 0 1 0
1 0 0 0 0 1
0 0 0 0 0 0

24

16

Input Pattern Weights Dot
Product

Updated
Weights

2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 6 2 2
2 2 6 2 2 2
2 6 2 2 6 2
6 2 2 2 2 6

2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 6 2 2
2 2 6 2 2 2
2 6 2 2 6 2
6 2 2 2 2 6

2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 6 2 2
2 2 6 2 2 2
2 6 2 2 6 2
6 2 2 2 2 6

0 0 0 0 0 0
0 0 0 0 0 0
0 0 3 7 0 0
0 3 3 0 7 0
3 3 0 0 0 7
3 0 0 0 0 0

2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 6 2 2
2 2 6 2 2 2
2 6 2 2 6 2
6 2 2 2 2 6

2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 6 2 2
2 2 6 2 2 2
2 6 2 2 6 2
6 2 2 2 2 6

2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 6 2 2
2 2 6 2 6 2
2 6 2 2 2 6
6 2 2 2 2 2

2 2 2 2 2 2
2 2 2 2 2 2
2 2 2 6 2 2
2 2 6 2 6 2
2 6 2 2 2 6
6 2 2 2 2 2

wmax = 8 w0 = 5 capture = 1 backoff = 3

J. E. Smith 11 10/26/2023

Search

The search parameter allows clusters to adapt to long-term input changes. If a segment zi has captured a

cluster and the input stream changes so that the cluster no longer reflects patterns in the changed input

stream, zi may no longer spike. Whenever a synapse receives an input spike but there is no output spike,

the synaptic weight is incremented by search (up to some maximum weight w0, where w0 < wmax). In

practice search << backoff and capture. Consequently, as long as zi does not spike, the synaptic weights

for zi will gradually creep upward according to the input spikes they receive. Eventually, the weights will

become high enough that output zi spikes and a new cluster is captured. Or, if a member of the original

cluster appears, zi will spike, and backoff will decrease the weights of the searching synapses by an

amount significantly greater than the search increment.

Update Schematics

Schematics for the capture and backoff update networks are in Figure 8. The weight matrix contains p

rows and q columns (p/q). For capture (Figure 8a), there is a matrix multiplication of input x transposed

to a p bit column vector and the q bit row vector z, yielding a p/q bit mask. The capture value is

multiplied by the bit mask, and the product is added to the weights. A min function limits the weight to

wmax. The backoff network (Figure 8b) works in a similar way, except the x input is complemented (“~”)

in order to implement the update function given in Table 1. Similarly, search (not shown) complements

the z input.

a) capture

b) backoff

Figure 8. Schematics for SDP capture and backoff updates. Example vectors and arrays for a

typical update are shown.

J. E. Smith 12 10/26/2023

In the example just given, functions are defined for dense arrays and vectors for illustrative purposes. In

most realistic applications, data will be very sparse (one-hot coding is ubiquitous). Hence, an efficient

implementation will likely maintain data in a sparse (i.e., compressed) form.

The three update functions are mutually exclusive so they can be performed in parallel with their outputs

merged before being added to the weight array (Figure 9).

Figure 9. Complete synaptic update network for a dendrite. The capture, backoff and search

update values are combined prior to final update.

capture 1

X

X+ maxwmax
1

min

1

backoff 1

X

X+

search 1

X

X+

0

Dendrite UP

~

~

+

1

+

X

W

Z

weightsout

p/q
weightsin int

p
x

bit

q
z

int

p/q

bit

p/q

bit

p/q

bit

p/q

int

p/q

int

p/q

int

p/q

int

int

p/q

int p/q

int p/q

int

-

> 0

J. E. Smith 13 10/26/2023

5. Online Clustering with Active Dendrites

An active dendrite forms clusters controlled by an enable signal. If a single dendrite is used with the

enable signal always active, then a single dendrite performs basic online clustering. This functionality is

demonstrated via an example application: spike sorting.

5.1 Research Benchmark: Spike Sorting

Collaborators: Abhishek Bhattacharjee BCI group at Yale.

Spike sorting is a key component of certain Brain Computer Interface (BCI) applications, as well as other

applications where individual neuron behavior is of interest. An important BCI application is prediction

of an on-coming brain seizure by detecting anomalous spiking behavior of individual neurons. As part of

a BCI, tiny electrocorticographic (ECoG) probes are embedded into the brain (Figure 10). Typically

these probes consist of multiple channels, but for the research benchmark used here, the activity from

only one channel is considered (Figure 11).

Figure 10. Input for the spike sorting comes from electrical probes inserted into the brain. Of

primary interest here are signals from ECoG probes placed under the skull.

Figure 11. A channel detects electrical activity from several nearby neurons (A,B,C,D), and the task

of spike sorting is to separate and identify the activity of individual neurons. This is done by

clustering action potentials (spikes) based on the shapes of their waveforms.

The processing chain is shown in Figure 12. There is significant front-end processing that precedes the

clustering application. The preprocessing step consists of filtering and spike detection. The filtered

signal is used as input for encoding and clustering. Because encoding greatly affects the quality of

clustering, it is included as part of the simulated implementation.

A A A

B B B B

C C C C

D
D D D

A AB B BC C CD D D Spike Sort

Neuron Spikes

Channel

D

C

A

B

Digital Spikes
Merged Neuron

Spikes

J. E. Smith 14 10/26/2023

Figure 12. Spike sorting. Preprocessing consists of a bandpass filter and a spike detection

mechanism. As part of encoding, the filtered signal is aligned to a spike’s peak, and the signal is

downsampled, framed, and scaled. The image is then similarity encoded (explained below). Finally,

the preprocessed images are passed to the clustering function which is implemented as a single

dendrite that is always enabled.

5.2 Spike Sorting Design Method

Using a good encoding method is essential for overall performance. Consequently, the design method

used here is a two-step process. First, frontend encoding is optimized using a k-means backend for

clustering. Although it is not an online method, using a k-means backend during frontend optimization

essentially isolates the clustering process from the encoding process. After frontend encoding is

optimized, the online clustering method is then optimized, yielding a complete, optimized, online design.

5.3 Encoder Optimization

Referring to Figure 12, it is assumed that pre-processing (filtering and spike detection) has been

performed. The input to the encoding process consists of discrete time samples of voltage levels. That is,

each input waveform is a 1D vector. The following parameters define the initial framing step.

precision: bits of input signal precision

before & after: the range of samples before and after the spike peak

stride & window: temporal parameters for block downsampling

Figure 13. After filtering, the input signal is reduced to a given precision in the y dimension and

framed to given times before and after the spike peak in the x dimension. The signal is also block

downsampled in the x dimension using a stride and window size as parameters (not shown).

Given the above parameters, the waveforms are scaled by taking the maximum and minimum voltage

levels over the entire benchmark and scaling the waveforms linearly so that at least one waveform reaches

the maximum and one reaches the minimum. After framing and scaling, the 1D vectors are converted to a

bit (pixel) representation. Conceptually, this is a 2D bit image although it is applied to the clustering unit

as a long 1D bit array in row major format. The final step, similarity coding, is described in the next

subsection. These steps are illustrated in Figure 14.

Bandpass

Filter

Spike

Detect

Align,

Down Sample,

Frame,

Scale

Dendrite
Raw Signal Filtered

Signal

Similarity

Coding Sorted Spikes

Preprocessing Encoding Clustering

before after

precision

J. E. Smith 15 10/26/2023

a) Typical waveforms after filtering and spike detection

b) Integer vectors after alignment, downsampling, framing, and scaling.

c) After conversion to bits (pixels).

d) After similarity encoding

Figure 14. Examples of frontend processing steps.

5.4 Similarity Coding

When forming clusters, similarity is based on distance, and when bit vectors are used (as is the case here),

the sad distance metric is Hamming distance.

One way of encoding values is to use a 1-hot code; the value n is represented as the 1-hot vector where

the nth bit position is a 1 and all the others are 0. The value 3 is represented as [0 0 1 0 0 0]. Index

values are naturally used in simulator code and are used for resolving ties in WTA inhibition to simplify

simulator debugging, but index values are not available to the model as operands. Consequently,

similarity of values cannot be determined by considering their indices, so 1-hot coding does not provide

useful similarity information. See Figure 15a where values 3, 2, 5, and 6 are encoded 1-hot. The distance

between the value 3 and all the others is 2, regardless of how close the value being encoded is to 3.

With similarity coding, the 1-hot code is converted to an m-hot code (where m is typically odd) by setting

⌊ m/2⌋positions on either side of the encoded value to 1s. Consequently, the sad of m-hot code vectors

provides a rough measure of distance (Figure 15b). In the example, 2 and 3 are distance 2; 5 and 3 are

distance 4; and 3 and 6 are distance 6. Beyond a certain range, depending on m, all the values become

the same distance. See [26] for a more formal discussion of similarity coding (although not by that name).

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

1 1 1 1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 1 1 1 0

0 0 1 0 0 0 0 0 1 1 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 1 1 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 1 0 0 0 1 1 1 0 0 0

0 0 0 0 1 0 0 0 1 1 1 1 0 0

0 0 0 0 1 0 0 0 0 1 1 1 0 0

0 0 0 0 1 0 0 0 0 0 1 1 1 1

1 1 1 1 1 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0 1 1

1 1 1 1 0 0 0 0 0 0 0 0 1 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1

0 0 0 1 0 0 0 0 0 1 1 1 1 1

1 0 1 1 0 0 0 0 0 1 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 1 1 0 0 0 0

0 0 0 0 1 0 0 1 1 1 1 0 0 0

0 0 0 0 1 0 0 0 1 1 1 1 0 0

0 0 0 0 1 0 0 0 1 1 1 1 1 0

1 1 1 1 0 0 0 0 1 1 1 1 1 1

1 1 1 1 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 0 0 0 0 0 0 1 1 1

1 1 1 1 0 0 0 0 0 0 0 0 1 1

1 1 1 1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0 0 0 0

1 1 0 0 1 0 0 1 0 0 1 1 1 0

1 1 1 0 1 0 0 1 1 1 1 1 1 1

1 1 1 1 1 0 0 1 1 1 1 1 1 1

1 1 1 1 1 0 0 0 1 1 1 1 1 1

0 1 1 1 1 0 0 0 1 1 1 1 1 1

0 0 1 1 0 0 0 0 1 1 0 0 0 1

0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

[6 6 6 6 10 17 20 16 13 12 10 9 7 7] [4 3 4 5 15 27 25 15 10 8 8 8 8 8] [7 7 7 7 12 19 19 14 11 11 10 9 8 7] [9 8 7 6 8 14 15 10 7 7 8 8 8 7]

J. E. Smith 16 10/26/2023

Figure 15. Examples of 1-hot and 3-hot similarity coding. With 1-hot coding encoding for all other

values are the same distance from the encoding for 3. With 3-hot encoding, the distances from

other encodings reflect differences in the encoded values.

When similarity coding is applied to the 2D spike patterns (e.g. Figure 14c) , the parameters are:

 vertical hotness : the number of similarity bit positions (m) in the y-dimension

 horizontal hotness: the number of similarity bit positions (m) in the x-dimension

When similarity coding with vertical hotness of 3 and horizontal hotness of 1 is applied to the example in

Figure 14c, the images in Figure 14d are the result.

5.5 Clustering

For clustering, all segments share the same global parameters: wmax, w0, threshold, capture, backoff, and

search. These are determined by systematically exploring the parameter space. This is done with an

offline training data set having characteristics that are similar to the data used for testing. For the results

reported here, however, the same dataset is used for both establishing global parameters and performance

testing.

The general procedure is to first set values for wmax and w0, then set capture = 1 and search = 0 (the

dataset does not change at the macro level) and sweep parameter spaces for the threshold and backoff

values. Then wmax and/or w0 can be adjusted, followed by another parameter sweep, until acceptable

accuracies are achieved.

5.6 Spike Sorting Results

Benchmark

The spike sorting benchmark consists of a rat hippocampal data set from Chung et al. [11]. Filtering and

spike detection is done prior to encoding, and simulations begin with the encoding step.

The benchmark consists of 10390 spikes, and spikes were given 6 labels by the benchmark authors,

indicating that 6 neurons are represented in the data set. Normally in spike sorting the number of neurons

is unknown at the beginning, but our objective in this section is to illustrate the clustering capability of a

dendrite, not to tackle the general problem of determining the number of clusters, i.e., the number of

neurons being sampled.

One feature of the benchmark is that spikes from different neurons are not evenly distributed in time.

Rather, a particular neuron or pair of neurons may be the only ones spiking for extended periods of time

(see Figure 16). If anything this makes the problem more challenging than if the neuron spikes are evenly

distributed.

0 1 1 1 0 0 0

1 1 1 0 0 0 0

0 0 0 1 1 1 0

3:

2:

5:

0 0 0 0 1 1 16:

0 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 1 0 0

3:

2:

5:

0 0 0 0 0 1 06:

distance
from 3:

2

2

2

2

4

6

a) 1-hot

value encoding

b) 3-hot

value encoding distance
from 3:

J. E. Smith 17 10/26/2023

Figure 16. A section of the spike sorting benchmark showing the neurons that spike as a function of

time. Individual neurons or pairs of neurons dominate extended periods of time.

Metrics

Cost is measured as the number of synaptic weights, num_weights. Given the frame dimensions, (before,

after, and precision), frame_size = 2precision × (before + after + 1). Then, given the number of clusters (6

in this example), the synaptic crossbar cost is num_weights = frame_size × num_clusters. In general, we

would like to keep frame size parameters small in order to reduce costs, while still giving satisfactory

results

The quality of clustering is measured by the average distance, avg_dist, over all the input patterns. The

lower avg_dist, the better the clusters.

An indirect quality measure is wt_convergence = Σwij*(wmax - wij)/(wmax∙ num_weights). The wmax in the

denominator normalizes the metric. An advantage of the wt_convergence metric is that it can be easily

computed for sequences of individual time steps. A good set of clusters having a low avg_dist typically

have weights that converge to a bimodal distribution so wt_convergence is close to 0.

Frontend Optimization

Using a k-means back-end, the parameter space was simulated, and the encoding parameters below were

determined to yield a good compromise between cost and performance.

Figure 17a shows the six centroids found by k-means operating on integer vectors. The centroids for the

pixel version for 3-hot column similarity coding are in Figure 17b.

SDP Clustering

Given the encoding parameters given above, SDP was used for clustering. wmax = 12 and w0 = 8. The

capture parameter was set to 1 and the search parameter to 0. Then values for the threshold and backoff

were systematically swept yielding the parameter values and metrics given below.

Because capture was set to 1 in all simulations, backoff can be a fraction. For an integer implementation,

these are scaled by multiplying by the backoff denominator.

Note avg_dist is slightly better than with k-means. To be fair, k-means has lots of local optima depending

on initial seeds. For k-means simulations, 64 different pseudo-random initial centroids were used. Given

before after precision stride block size row hot col hot # centroids av_dist cost

6 6 5 3 5 1 3 6 0.73 2496

frame size downsample similarity coding metrics

thresh capt backoff srch wtConv av_dist cost

128 1 9/16 0 0.008 0.71 2496

metricsclustering params

J. E. Smith 18 10/26/2023

this small sample of initial centroids, it is very likely that some other seed will lead to an avg_dist that is

at least as good as the SDP version, however any difference will likely be small.

Visualizing Clustering Quality

Applying conventional k-means to numerical vectors (Figure 14b) yields the centroids shown in Figure

17a.

Applying k-means to the binarized (pixel) encoding with 3-hot column similarity yields the centroids in

Figure 17b in heat map form (green = 0, red = 1).

When SDP learning is used, the final weight matrices for each of the clusters are shown in Figure 17c.

Because the SDP method tends to convergence to a bimodal weight distribution, the weights are only an

approximation of the centroids.

Finally, when the dataset is applied with the SDP-determined weights, the centroids for the resulting

clusters are in Figure 17d. Although not exactly the same as the k-means centroids (Figure 17b), they are

quite similar.

J. E. Smith 19 10/26/2023

a) integer k-means centroids

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.2 0 0 0 0 0

0 0 0 0 0 0 0 0.5 0 0 0 0 0

0 0 0 0 0 0 0 0.6 0 0 0 0 0

0 0 0 0 0 0 0 0.7 0 0 0 0 0

0 0 0 0 0 0 0 0.4 0 0 0 0 0

0 0 0 0 0 0 0 0.3 0 0 0 0 0

0 0 0 0 0 0 0 0.2 0.2 0 0 0 0

0 0 0 0 0 0 0 0.1 0.4 0 0 0 0

0 0 0 0 0 0 0 0.1 0.7 0 0 0 0

0 0 0 0 0 0 0 0 0.8 0 0 0 0

0 0 0 0 0 0 0.2 0 0.6 0 0 0 0

0.1 0.1 0 0 0 0 0.4 0 0.3 0 0 0 0

0.2 0.2 0.1 0 0 0 0.6 0 0.1 0 0 0 0

0.2 0.3 0.3 0 0 0 0.7 0 0 0.4 0 0 0

0.4 0.4 0.4 0.1 0 0 0.5 0 0 0.8 0 0 0.1

0.4 0.6 0.5 0.2 0 0 0.4 0 0 1 0.3 0.1 0.1

0.5 0.6 0.6 0.3 0 0 0.2 0 0 0.6 0.7 0.5 0.4

0.4 0.4 0.5 0.6 0.1 0 0.1 0 0 0.2 0.9 0.8 0.7

0.4 0.2 0.3 0.7 0.3 0.1 0 0 0 0 0.7 0.8 0.8

0.3 0 0.1 0.6 0.6 0.3 0 0 0 0 0.2 0.5 0.5

0.1 0 0 0.3 0.7 0.7 0 0 0 0 0.1 0.2 0.2

0 0 0 0.1 0.7 0.8 0 0 0 0 0 0 0

0 0 0 0.1 0.3 0.6 0 0 0 0 0 0 0

0 0 0 0 0.2 0.3 0 0 0 0 0 0 0

0 0 0 0 0 0.1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.1 0 0 0 0 0

0 0 0 0 0 0 0 0.3 0 0 0 0 0

0 0 0 0 0 0 0 0.7 0 0 0 0 0

0 0 0 0 0 0 0 0.9 0 0 0 0 0

0 0 0 0 0 0 0 0.7 0.1 0 0 0 0

0 0 0 0 0 0 0 0.3 0.5 0 0 0 0

0.3 0.3 0.2 0.2 0.1 0 0.1 0 0.9 0 0 0 0.1

0.9 0.9 0.8 0.8 0.6 0 0.4 0 0.9 0.2 0.2 0.4 0.7

1 1 1 1 1 0.1 0.7 0 0.5 0.7 0.8 0.9 1

0.7 0.7 0.8 0.8 0.9 0.6 0.9 0 0.1 1 1 1 0.9

0.1 0.1 0.2 0.2 0.4 1 0.6 0 0 0.8 0.8 0.6 0.3

0 0 0 0 0 0.9 0.2 0 0 0.3 0.2 0.1 0

0 0 0 0 0 0.4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.2 0 0 0 0 0

0 0 0 0 0 0 0 0.5 0 0 0 0 0

0 0 0 0 0 0 0 0.8 0 0 0 0 0

0 0 0 0 0 0 0 0.8 0.3 0 0 0 0

0 0 0 0 0 0 0 0.5 0.7 0 0 0 0

0 0 0 0 0 0 0 0.2 0.9 0 0 0 0

0 0 0 0 0 0 0.2 0 0.7 0.1 0 0 0

0 0 0 0 0 0 0.4 0 0.3 0.4 0 0 0

0 0 0 0 0 0 0.7 0 0 0.8 0 0 0

0 0 0 0 0 0 0.8 0 0 0.9 0.3 0 0

0 0 0 0 0 0 0.6 0 0 0.6 0.8 0.1 0

0.3 0.1 0 0 0 0 0.3 0 0 0.2 0.9 0.5 0.1

0.8 0.5 0.2 0.1 0 0.1 0.1 0 0 0 0.7 0.9 0.4

0.9 0.9 0.7 0.4 0.2 0.4 0 0 0 0 0.2 0.9 0.7

0.7 0.9 0.9 0.8 0.6 0.8 0 0 0 0 0 0.5 0.8

0.2 0.5 0.8 0.9 0.9 0.9 0 0 0 0 0 0.1 0.6

0 0.1 0.3 0.6 0.8 0.6 0 0 0 0 0 0 0.3

0 0 0 0.1 0.4 0.1 0 0 0 0 0 0 0

0 0 0 0 0.1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.1 0 0 0 0 0

0 0 0 0 0 0 0 0.2 0 0 0 0 0

0 0 0 0 0 0 0 0.5 0 0 0 0 0

0 0 0 0 0 0 0 0.7 0 0 0 0 0

0 0 0 0 0 0 0 0.7 0 0 0 0 0

0 0 0 0 0 0 0 0.5 0 0 0 0 0

0 0 0 0 0 0 0 0.3 0 0 0 0 0

0 0 0 0 0 0 0 0.1 0.1 0 0 0 0

0 0 0 0 0 0 0 0 0.3 0 0 0 0

0 0 0 0 0 0 0 0 0.6 0 0 0 0

0 0 0 0 0 0 0.1 0 0.8 0 0 0 0

0 0 0 0 0 0 0.2 0 0.7 0 0 0 0

0 0 0 0 0 0 0.4 0 0.4 0 0 0 0

0 0 0 0 0 0 0.6 0 0.1 0 0 0 0

0 0 0 0 0 0 0.6 0 0 0 0 0 0

0 0 0 0 0 0 0.5 0 0 0.2 0 0 0

0 0 0 0 0 0 0.3 0 0 0.6 0 0 0

0 0 0 0 0 0 0.1 0 0 0.9 0 0 0

0.1 0 0 0 0 0 0 0 0 0.8 0.2 0 0

0.6 0.3 0.1 0 0 0.1 0 0 0 0.4 0.8 0.2 0.1

0.9 0.8 0.4 0.1 0 0.1 0 0 0 0.1 0.9 0.7 0.4

0.9 0.9 0.9 0.5 0.2 0.4 0 0 0 0 0.8 0.9 0.8

0.4 0.7 0.9 0.9 0.7 0.8 0 0 0 0 0.2 0.8 0.9

0 0.2 0.6 0.9 0.9 0.8 0 0 0 0 0 0.3 0.6

0 0 0.1 0.5 0.8 0.6 0 0 0 0 0 0 0.2

0 0 0 0.1 0.3 0.2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.1 0 0 0 0 0

0 0 0 0 0 0 0 0.3 0 0 0 0 0

0 0 0 0 0 0 0 0.6 0 0 0 0 0

0 0 0 0 0 0 0 0.7 0 0 0 0 0

0 0 0 0 0 0 0 0.6 0 0 0 0 0

0 0 0 0 0 0 0 0.4 0.2 0 0 0 0

0 0 0 0 0 0 0 0.2 0.4 0 0 0 0

0 0 0 0 0 0 0 0 0.8 0 0 0 0

0 0 0 0 0 0 0 0 0.8 0 0 0 0

0 0 0 0 0 0 0 0 0.5 0 0 0 0

0 0 0 0 0 0 0.1 0 0.2 0 0 0 0

0 0 0 0 0 0 0.2 0 0.1 0.1 0 0 0

0 0 0 0 0 0 0.4 0 0 0.4 0 0 0

0 0 0 0 0 0 0.5 0 0 0.7 0.1 0 0

0 0 0 0 0 0 0.6 0 0 0.8 0.2 0 0

0 0 0 0 0 0 0.6 0 0 0.6 0.5 0.1 0.1

0.2 0 0 0 0 0 0.4 0 0 0.2 0.9 0.5 0.2

0.7 0.3 0 0 0 0 0.2 0 0 0 0.8 0.9 0.6

0.9 0.8 0.4 0.1 0 0 0 0 0 0 0.4 0.8 0.9

0.8 0.9 0.8 0.4 0.1 0.1 0 0 0 0 0.1 0.5 0.8

0.3 0.7 0.9 0.8 0.5 0.4 0 0 0 0 0 0.1 0.4

0 0.2 0.6 0.9 0.9 0.8 0 0 0 0 0 0 0.1

0 0 0.2 0.6 0.9 0.9 0 0 0 0 0 0 0

0 0 0 0.2 0.5 0.6 0 0 0 0 0 0 0

0 0 0 0 0.1 0.2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.1 0 0 0 0 0

0 0 0 0 0 0 0 0.3 0 0 0 0 0

0 0 0 0 0 0 0 0.4 0 0 0 0 0

0 0 0 0 0 0 0 0.5 0 0 0 0 0

0 0 0 0 0 0 0.1 0.5 0 0 0 0 0

0 0 0 0 0 0 0.3 0.4 0.2 0 0 0 0

0 0 0 0 0 0 0.6 0.4 0.6 0 0 0 0

0 0 0 0 0 0 0.8 0.2 0.8 0 0 0 0

0 0 0 0 0 0 0.7 0.1 0.8 0 0 0 0

0 0 0 0 0 0.1 0.4 0 0.4 0.1 0 0 0

0 0 0 0 0 0.3 0.1 0 0.1 0.4 0 0 0

0 0 0 0 0 0.5 0 0 0 0.8 0 0 0

0 0 0 0 0 0.5 0 0 0 0.9 0.2 0 0

0 0 0 0 0.1 0.5 0 0 0 0.6 0.7 0.1 0

0.4 0 0 0 0.2 0.4 0 0 0 0.2 0.9 0.5 0.2

0.9 0.5 0.1 0 0.3 0.3 0 0 0 0 0.8 0.9 0.6

0.9 0.9 0.6 0.2 0.4 0.2 0 0 0 0 0.3 0.9 0.9

0.6 1 0.9 0.7 0.7 0.1 0 0 0 0 0.1 0.5 0.7

0.1 0.5 0.9 0.9 0.7 0 0 0 0 0 0 0.1 0.3

0 0.1 0.4 0.8 0.4 0 0 0 0 0 0 0 0.1

0 0 0.1 0.3 0.1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

b) 3-hot similarity coded k-means centroids

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 12 0 0 0 0 0

0 0 0 0 0 0 0 12 0 0 0 0 0

0 0 0 0 0 0 0 12 1 0 0 0 0

0 0 0 0 0 0 0 0 12 0 0 0 0

0 0 0 0 0 0 0 0 12 0 0 0 0

0 0 0 0 0 0 0 0 12 0 0 0 0

0 0 0 0 0 0 12 0 0 0 0 0 0

0 0 0 0 0 0 12 0 0 12 0 0 0

0 0 0 0 0 0 12 0 0 12 0 0 0

0 0 0 0 0 0 3 0 0 12 9 0 0

0 0 0 0 0 0 0 0 0 0 12 0 0

12 11 0 0 0 0 0 0 0 0 12 12 0

12 12 11 8 0 11 0 0 0 0 11 12 12

12 12 12 12 12 12 0 0 0 0 0 12 12

0 11 12 12 12 12 0 0 0 0 0 0 12

0 0 3 12 12 12 0 0 0 0 0 0 9

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 12 0 0 0 0 0

0 0 0 0 0 0 0 12 0 0 0 0 0

0 0 0 0 0 0 0 12 0 0 0 0 0

0 0 0 0 0 0 0 4 0 0 0 0 0

0 0 0 0 0 0 0 0 11 0 0 0 0

7 4 1 0 0 0 0 0 12 0 0 0 0

12 12 11 12 11 0 11 0 12 0 1 12 11

12 12 12 12 12 0 12 0 11 10 12 12 12

12 12 12 12 12 11 12 0 0 12 12 12 12

0 0 1 0 12 11 11 0 0 12 11 11 9

0 0 0 0 0 12 0 0 0 11 1 0 0

0 0 0 0 0 11 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 11 0 0 0 0 0

0 0 0 0 0 0 0 12 0 0 0 0 0

0 0 0 0 0 0 0 12 11 0 0 0 0

0 0 0 0 0 0 0 2 11 0 0 0 0

0 0 0 0 0 0 0 0 12 0 0 0 0

0 0 0 0 0 0 0 0 9 1 0 0 0

0 0 0 0 0 0 9 0 1 11 0 0 0

0 0 0 0 0 0 12 0 0 12 1 0 0

0 0 0 0 0 0 12 0 0 12 12 1 0

12 2 0 1 0 0 12 0 0 6 12 12 1

12 12 2 0 0 0 0 0 0 0 11 12 12

12 12 12 11 1 0 0 0 0 0 0 11 12

10 11 12 12 12 12 0 0 0 0 0 0 11

0 10 11 12 12 12 0 0 0 0 0 0 9

0 0 0 11 12 12 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 9 0 0 0 0 0

0 0 0 0 0 0 0 12 0 0 0 0 0

0 0 0 0 0 0 0 12 0 0 0 0 0

0 0 0 0 0 0 0 11 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 11 0 0 0 0

0 0 0 0 0 0 0 0 11 0 0 0 0

0 0 0 0 0 0 2 0 12 0 0 0 0

0 0 0 0 0 0 8 0 10 0 0 0 0

0 0 0 0 0 0 11 0 1 0 0 0 0

0 0 0 0 0 0 10 0 0 0 0 0 0

0 0 0 0 0 0 10 0 0 0 0 0 0

0 0 0 0 0 0 7 0 0 11 0 0 0

0 0 0 0 0 0 1 0 0 12 0 0 0

1 0 0 0 0 0 0 0 0 12 0 0 0

12 1 0 0 0 0 0 0 0 12 12 2 0

12 12 12 0 0 0 0 0 0 0 12 12 11

11 12 12 9 5 10 0 0 0 0 12 12 12

2 11 12 12 11 12 0 0 0 0 0 12 12

0 0 11 12 12 12 0 0 0 0 0 0 11

0 0 0 11 12 12 0 0 0 0 0 0 0

0 0 0 0 4 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 11 0 0 0 0 0

0 0 0 0 0 0 0 12 0 0 0 0 0

0 0 0 0 0 0 0 12 0 0 0 0 0

0 0 0 0 0 0 0 12 1 0 0 0 0

0 0 0 0 0 0 0 1 6 0 0 0 0

0 0 0 0 0 0 0 0 11 0 0 0 0

0 0 0 0 0 0 0 0 12 0 0 0 0

0 0 0 0 0 0 0 0 12 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 11 0 0 11 0 0 0

0 0 0 0 0 0 12 0 0 12 0 0 0

0 0 1 1 0 0 12 0 0 11 11 0 0

0 0 1 1 0 0 9 0 0 2 11 5 0

11 3 1 1 0 0 0 0 0 0 12 12 12

12 12 11 0 0 0 0 0 0 0 11 12 12

12 12 11 11 1 0 0 0 0 0 1 11 12

1 11 11 11 12 10 0 0 0 0 0 0 11

0 0 10 11 12 11 0 0 0 0 0 0 0

0 0 0 9 11 12 0 0 0 0 0 0 0

0 0 0 0 4 12 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 9 0 0 0 0 0

0 0 0 0 0 0 0 11 0 0 0 0 0

0 0 0 0 0 0 5 11 10 0 0 0 0

0 0 0 0 0 0 10 11 11 0 0 0 0

0 0 0 0 0 0 10 4 11 0 0 0 0

0 0 0 0 0 3 12 1 11 0 0 0 0

0 0 0 0 0 10 2 0 5 11 0 0 0

0 0 0 0 0 10 2 0 1 11 0 0 0

0 0 0 0 0 10 0 0 1 11 0 0 0

0 0 0 0 4 9 0 0 0 12 11 0 0

2 0 0 1 7 2 0 0 0 1 11 12 4

12 8 0 1 12 2 0 0 0 1 12 12 12

12 11 11 2 12 0 0 0 0 0 1 12 12

12 11 11 12 11 0 0 0 0 0 1 8 12

0 12 12 12 4 0 0 0 0 0 0 0 0

0 1 10 10 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

c) SDP weights

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.2 0 0 0 0 0

0 0 0 0 0 0 0 0.7 0 0 0 0 0

0 0 0 0 0 0 0 0.9 0.2 0 0 0 0

0 0 0 0 0 0 0 0.8 0.6 0 0 0 0

0 0 0 0 0 0 0 0.3 0.9 0 0 0 0

0 0 0 0 0 0 0 0.1 0.8 0.1 0 0 0

0 0 0 0 0 0 0.2 0 0.4 0.4 0 0 0

0 0 0 0 0 0 0.5 0 0.1 0.8 0.1 0 0

0 0 0 0 0 0 0.8 0 0 0.9 0.4 0 0

0.1 0 0 0 0 0 0.8 0 0 0.6 0.9 0.2 0

0.4 0.1 0 0 0 0 0.5 0 0 0.2 0.9 0.8 0.2

0.8 0.6 0.3 0.1 0 0.1 0.1 0 0 0 0.6 0.9 0.7

0.9 0.9 0.8 0.4 0.2 0.3 0 0 0 0 0.1 0.8 0.9

0.6 0.8 0.9 0.9 0.6 0.8 0 0 0 0 0 0.2 0.8

0.1 0.4 0.7 0.9 0.9 0.9 0 0 0 0 0 0 0.3

0 0 0.2 0.6 0.8 0.7 0 0 0 0 0 0 0.1

0 0 0 0.1 0.4 0.2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.1 0 0 0 0 0

0 0 0 0 0 0 0 0.3 0 0 0 0 0

0 0 0 0 0 0 0 0.7 0 0 0 0 0

0 0 0 0 0 0 0 0.9 0 0 0 0 0

0 0 0 0 0 0 0 0.7 0.1 0 0 0 0

0 0 0 0 0 0 0 0.3 0.5 0 0 0 0

0.3 0.3 0.2 0.2 0.1 0 0.1 0 0.9 0 0 0 0.1

0.9 0.9 0.8 0.8 0.6 0 0.4 0 0.9 0.2 0.2 0.4 0.7

1 1 1 1 1 0.1 0.7 0 0.5 0.7 0.8 0.9 1

0.7 0.7 0.8 0.8 0.9 0.6 0.9 0 0.1 1 1 1 0.9

0.1 0.1 0.2 0.2 0.4 1 0.6 0 0 0.8 0.8 0.6 0.3

0 0 0 0 0 0.9 0.2 0 0 0.3 0.2 0.1 0

0 0 0 0 0 0.4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.1 0 0 0 0 0

0 0 0 0 0 0 0 0.3 0 0 0 0 0

0 0 0 0 0 0 0 0.8 0 0 0 0 0

0 0 0 0 0 0 0 0.9 0 0 0 0 0

0 0 0 0 0 0 0 0.7 0.4 0 0 0 0

0 0 0 0 0 0 0 0.2 0.8 0 0 0 0

0 0 0 0 0 0 0.1 0 0.9 0 0 0 0

0 0 0 0 0 0 0.3 0 0.6 0.1 0 0 0

0 0 0 0 0 0 0.7 0 0.2 0.4 0 0 0

0 0 0 0 0 0 0.8 0 0 0.8 0 0 0

0 0 0 0 0 0 0.7 0 0 0.9 0.2 0 0

0 0 0 0 0 0 0.3 0 0 0.6 0.7 0 0

0.2 0.1 0 0 0 0 0.1 0 0 0.2 0.9 0.2 0

0.8 0.4 0.2 0.1 0 0.1 0 0 0 0 0.8 0.8 0.1

1 0.9 0.7 0.3 0.2 0.5 0 0 0 0 0.3 1 0.5

0.8 0.9 0.9 0.8 0.6 0.9 0 0 0 0 0 0.8 0.9

0.2 0.5 0.8 0.9 0.9 0.9 0 0 0 0 0 0.2 0.8

0 0.1 0.3 0.7 0.8 0.5 0 0 0 0 0 0 0.5

0 0 0 0.1 0.4 0.1 0 0 0 0 0 0 0.1

0 0 0 0 0.1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.1 0 0 0 0 0

0 0 0 0 0 0 0 0.2 0 0 0 0 0

0 0 0 0 0 0 0 0.4 0 0 0 0 0

0 0 0 0 0 0 0 0.6 0 0 0 0 0

0 0 0 0 0 0 0 0.6 0 0 0 0 0

0 0 0 0 0 0 0 0.5 0 0 0 0 0

0 0 0 0 0 0 0 0.3 0 0 0 0 0

0 0 0 0 0 0 0 0.2 0.1 0 0 0 0

0 0 0 0 0 0 0 0.1 0.3 0 0 0 0

0 0 0 0 0 0 0.1 0 0.5 0 0 0 0

0 0 0 0 0 0 0.1 0 0.7 0 0 0 0

0 0 0 0 0 0 0.3 0 0.7 0 0 0 0

0 0 0 0 0 0 0.5 0 0.5 0 0 0 0

0 0 0 0 0 0 0.6 0 0.2 0 0 0 0

0 0 0 0 0 0 0.6 0 0 0 0 0 0

0 0 0 0 0 0 0.4 0 0 0.2 0 0 0

0 0 0 0 0 0 0.3 0 0 0.6 0 0 0

0 0 0 0 0 0 0.1 0 0 0.9 0 0 0

0.1 0 0 0 0 0.1 0 0 0 0.8 0.3 0 0

0.6 0.3 0.1 0 0 0.1 0 0 0 0.4 0.8 0.2 0.1

0.9 0.8 0.3 0.1 0 0.2 0 0 0 0.1 0.9 0.7 0.4

0.8 0.9 0.8 0.5 0.2 0.4 0 0 0 0 0.7 0.9 0.8

0.4 0.7 0.9 0.9 0.7 0.7 0 0 0 0 0.2 0.8 0.9

0.1 0.2 0.6 0.9 0.9 0.8 0 0 0 0 0 0.3 0.6

0 0 0.2 0.5 0.8 0.5 0 0 0 0 0 0 0.2

0 0 0 0.1 0.3 0.2 0 0 0 0 0 0 0

0 0 0 0 0.1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.1 0 0 0 0 0

0 0 0 0 0 0 0 0.2 0 0 0 0 0

0 0 0 0 0 0 0 0.5 0 0 0 0 0

0 0 0 0 0 0 0 0.7 0 0 0 0 0

0 0 0 0 0 0 0 0.6 0 0 0 0 0

0 0 0 0 0 0 0 0.5 0.1 0 0 0 0

0 0 0 0 0 0 0 0.3 0.4 0 0 0 0

0 0 0 0 0 0 0 0.1 0.7 0 0 0 0

0 0 0 0 0 0 0 0 0.8 0 0 0 0

0 0 0 0 0 0 0 0 0.6 0 0 0 0

0 0 0 0 0 0 0.1 0 0.2 0 0 0 0

0 0 0 0 0 0 0.2 0 0.1 0.1 0 0 0

0 0 0 0 0 0 0.3 0 0 0.4 0 0 0

0 0 0 0 0 0 0.5 0 0 0.8 0 0 0

0 0 0 0 0 0 0.7 0 0 0.8 0.2 0 0

0 0 0 0 0 0 0.6 0 0 0.6 0.5 0.1 0.1

0.2 0.1 0 0 0 0 0.4 0 0 0.2 0.9 0.5 0.2

0.7 0.3 0.1 0 0 0 0.2 0 0 0 0.8 0.9 0.5

0.9 0.8 0.4 0.1 0 0 0 0 0 0 0.4 0.9 0.8

0.8 0.9 0.8 0.5 0.1 0.1 0 0 0 0 0.1 0.5 0.8

0.3 0.7 0.9 0.9 0.6 0.4 0 0 0 0 0 0.1 0.4

0 0.2 0.6 0.9 0.9 0.8 0 0 0 0 0 0 0.1

0 0 0.1 0.5 0.9 0.9 0 0 0 0 0 0 0

0 0 0 0.1 0.4 0.5 0 0 0 0 0 0 0

0 0 0 0 0.1 0.2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0.1 0 0 0 0 0

0 0 0 0 0 0 0 0.3 0 0 0 0 0

0 0 0 0 0 0 0 0.4 0 0 0 0 0

0 0 0 0 0 0 0.1 0.6 0 0 0 0 0

0 0 0 0 0 0 0.3 0.6 0.1 0 0 0 0

0 0 0 0 0 0 0.5 0.5 0.5 0 0 0 0

0 0 0 0 0 0 0.7 0.3 0.8 0 0 0 0

0 0 0 0 0 0 0.7 0.2 0.9 0 0 0 0

0 0 0 0 0 0.2 0.5 0 0.5 0.1 0 0 0

0 0 0 0 0 0.4 0.2 0 0.2 0.4 0 0 0

0 0 0 0 0 0.6 0 0 0 0.8 0 0 0

0 0 0 0 0 0.7 0 0 0 0.9 0.2 0 0

0 0 0 0 0.1 0.5 0 0 0 0.6 0.7 0.2 0

0.3 0 0 0 0.3 0.3 0 0 0 0.2 0.9 0.6 0.3

0.9 0.4 0.1 0 0.4 0.2 0 0 0 0 0.8 0.9 0.7

0.9 0.9 0.5 0.2 0.6 0.1 0 0 0 0 0.3 0.8 0.9

0.7 1 0.9 0.7 0.7 0 0 0 0 0 0.1 0.4 0.7

0.1 0.6 0.9 0.9 0.5 0 0 0 0 0 0 0.1 0.3

0 0.1 0.5 0.8 0.3 0 0 0 0 0 0 0 0.1

0 0 0.1 0.3 0.1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

d) SDP centroids

Figure 17. Results for spike sorting benchmark. a) k-means centroids for inputs given as integer

vectors, b) the pixel versions with 3-hot similarity encoding in the vertical dimension, c) The

weights for the 3-hot similarity coded inputs after SDP. d) The cluster centroids when input

patterns are applied to a dendrite with the weights given in c). Although not exactly the same as the

k-means centroids in b), they are very similar.

J. E. Smith 20 10/26/2023

Online Adaptivity

One of the key features of online SDP is that centroids dynamically adapt to changes in input patterns.

This is demonstrated in the following simulations.

The full benchmark sequence of 10,390 spikes was first applied to the network, then beginning with

10,391, the individual waveforms were flipped top-to-bottom and applied a second time. This is a very

immediate and disruptive change in the input stream. Recall that the SDP entry xi =1, zj =0 causes the

weight to be incremented: Δ wi
j = +search. As long as zj continues to be 0, the weight wi

j will edge up by

+search until it reaches the baseline weight w0.

To determine w0: if the input vector x has m ones, then define w0 = threshold/m. Consequently, as long as

zj =0, if a given pattern is applied a sufficient number of times, then all the weights corresponding to the

1s in the input pattern will eventually reach w0 . Because there are m of them, their sum will eventually

reach the threshold, and the given neuron is eligible for WTA inhibition. If no other neuron reaches a

higher potential, then the given neuron will “win”, and the capture / backoff mechanism will begin to

solidify the given pattern as a nascent centroid.

Results for two different search values are in Figure 18. In these simulations, weight convergence is used

as an indirect measure of clustering quality. As before capture = 1 and backoff = 9/16. When search =

1/256, the step where the input patterns are flipped is quite evident. Eventually, after about 5000 time

steps, the weights converge to their original levels. With a larger search = 25/256, the disruption is just

as great; however, the weights reconverge much more quickly. Note that with the higher search

parameter, the weight convergence value contains more “noise” (for lack of a better term). Informally,

this indicates the SDP mechanism is more open to cluster adaptations. This reflects the classic

stability/plasticity tradeoff: the greater the plasticity (as reflected in the higher search parameter), the less

the stability.

Figure 18. Weight convergence versus time steps (number of input patterns) for two search

parameters.

J. E. Smith 21 10/26/2023

6. Online Supervised Classification with Active Dendrites

An online implementation continually takes a sequence of inputs and produces a sequence of outputs in a

streaming fashion. At every step it infers an output based on what it has learned up to that point.

Supervised learning may be applied continually or intermittently. When learning is turned on, an output

is first inferred, then the correct output is provided for weight updating.

6.1 Clustering Voters

In this section a network composed of active dendrites (essentially single-dendrite neurons) is

constructed. For this application, the output of an active dendrite is binarized. See Figure 19. The

binarized outputs are interpreted as “votes” which are tallied in order to identify classes. For supervised

classification, the modified dendrite combines the function of clustering and voting, so it is referred to as

a CV unit.

Figure 19 A clustering voter (CV) unit is an active dendrite with a binarized output. Each CV unit

is associated with a specific label. The input C carries a context – a pixel pattern in the case of

MNIST, and the input L is active when the CV unit’s associated label is present. The output V is a

vote for a given label that is fed to a tally unit. In terms of the larger neuromorphic architecture

(Figure 2), this is a neuron having a single dendrite.

For inference all the labels are active, and for learning only a single label is active (provided by a

supervisor).

An input image or pattern to be classified is divided into potentially overlapping receptive fields (RFs).

Each RF is associated with a CV group containing a CV unit for each label (Figure 20). Each CV unit

updates weights when its associated label is applied, independently of all the other CV units in its group.

In effect, each CV unit forms clusters for its associated label. During inference, a CV unit casts a “vote”

for its associated label when the input pattern is a good match (based on the dendrite’s threshold). Each

CV unit’s vote is produced independently of all the other CV units, so a given CV group may cast

multiple votes (and often does).

6.2 Extended Example: Online MNIST

The architecture is illustrated via the construction of a system that implements an online version of the

classic MNIST benchmark [17]. See Figure 20.

y1

x

Dendrite

1

p

bit

bit

q

int
z1

D

P

A

L

C

> 0
V

CV Unit

1
bit

max int
1

J. E. Smith 22 10/26/2023

Figure 20. An online supervised classifier for the online MNIST benchmark. It contains 576 CV

groups, one for each RF. Each CV group consists of 10 CV units, one for each label. There is a total

of 5760 CV units.

Receptive field (RF) formation and encoding functions are application dependent. RF formation divides

the input into (potentially overlapping) RFs. For the MNIST application, the input patterns are 784 bit

(28x28) images of the numerals 0 through 9. See Figure 21. For the benchmark study here, the images

are converted to black-and-white. RF formation divides the 28×28 input pattern into all overlapping 5×5

RFs, yielding a total of 576 RFs. In each RF, a checkerboard pattern of pixels forms the actual inputs. In

the example, 9 of the 25 pixels are chosen. So, each RF yields is a 9-bit vector.

For MNIST, the input RFs are further encoded to a constant weight code. In this case, a two-rail

encoding is used, so each RF is expanded to an 18-bit vector.

Figure 21. Example MNIST image with an example 5×5 RF in red, and selected checkerboard

pattern of 9 pixels in yellow.

After encoding, the 18-bit vectors are distributed to 576 CV groups, each group containing 10 CV units –

one unit for each of the ten classes.

1

bit

label

label

+

WTA

+

10

1

int

int

1

int

576
bit

576

bit

10

bit576/18

bit

10
bit

pattern 784
bit

1
bit

CV

L

C
bit

18
V

1
bit

CV

L

C
bit

18
V

1

bit

1
bit

CV

L

C
bit

18
V

1
bit

CV

L

C
bit

18
V

1

bit

1

bit

encode

form
RFs

encode

5760 CV units

CV group

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 0 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 0 0 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 0 0 0 0 0 0 0 1 1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 0 0 0 0 -1 -1 1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

-1 -1

J. E. Smith 23 10/26/2023

During supervised learning, a label is supplied, and each of the 10 CV units within a group clusters the

input patterns associated with its specific label. Each label essentially has its own private set of clusters.

During inference, all the labels are activated, and if the dendrite contained in a CV unit has a good match

(its threshold is reached), the resulting spike is interpreted as a binary vote for the CV unit’s label.

Then, on the right side of Figure 20 all of the votes for each of the classes are tallied (summed), and the

WTA block selects the winning class as output. The one-hot WTA winner identifies the label of the

applied input pattern.

Design Method

To implement a supervised classifier, the designer determines the following.

1) RF formation and encoding – these functions are both highly application dependent and crucial to the

quality (accuracy and cost) of the classifier.

2) Network sizing: The number of RFs, the number of CV units per CV group (the number of labels), and

the number of segments per CV unit.

3) Network tuning: For a representative data set, the parameters wmax, w0, threshold, capture, backoff, and

search are established via parameter sweeps. During normal operation, these global parameters are fixed

and are the same across all the segments in the network. To expedite the process a (small) representative

subset of RFs may be used.

Benchmark results

MNIST contains 60K training inputs and 10K test inputs. The test inputs have a separate set of writers

than the training inputs. For the first benchmark simulations, the training and test inputs are combined to

form a length 60K + 10K input stream that is applied only once. Learning begins immediately and

continues throughout the run. In Figure 22, the error rate is computed for each block of 1000 inputs.

After a few thousand inputs, error rates below .1 are achieved. Then gradually over time until the 60000th

input, the error rate trends downward with rates approaching .02. After input 60000, the 10000 inputs

from new writers are applied. At that point, the error rate ticks up, but then settles back down, reaching

down to .0055. The overall error rate for the last 10000 test inputs is .037.

Figure 22. Online accuracy for single pass through 60K + 10K MNIST benchmark. Error rate is

computed for blocks of 1000 inputs.

Observe that each CV group has a CV unit for each label. These CV units vote independently, so each

CV group typically votes for more than one label, several labels in fact. Figure 23 shows the vote totals

for the first 20 images in the test set that begins with image 60001. There are 576 CV groups and the vote

totals for each label are in the 300 to 500 range. For these 20 examples, on average a CV group votes for

6.9 different labels for each image. This suggests that it is by eliminating less likely labels (the ones not

voted for) that the correct label is determined.

J. E. Smith 24 10/26/2023

Figure 23. Vote totals for MNIST images 60001 through 60020. The rows contain the number of

votes for each label, and the correct label is the rightmost column. The highest vote total is shaded

green. Of the 20 images the correct image gets the highest vote total with one exception, image

60008. In that case the highest total is 425 and the total for the correct label is 416.

Simulation for different segment counts were done with the error rates given in Figure 24. The costs

vary linearly with segment counts, while error rates are sublinear. Doubling cost from 8 to 16 segments

reduces error rate by .007. Adding another 8 segments reduces error rate by .004.

0 1 2 3 4 5 6 7 8 9 Label

60001 428 380 452 433 434 423 371 545 402 495 7

60002 381 323 470 425 298 375 416 289 359 285 2

60003 415 549 467 457 476 453 438 472 479 435 1

60004 485 297 357 375 330 392 406 355 347 332 0

60005 378 349 403 374 524 391 378 439 395 470 4

60006 410 554 456 445 481 446 416 481 477 439 1

60007 338 354 378 384 465 396 332 396 413 406 4

60008 343 390 404 407 419 425 366 405 406 416 9

60009 360 318 372 305 372 394 367 333 347 339 5

60010 375 326 382 360 444 398 326 478 394 487 9

60011 540 266 392 388 326 403 396 309 384 328 0

60012 390 281 322 317 334 353 459 302 322 295 6

60013 403 365 412 429 501 453 385 483 449 543 9

60014 489 265 362 385 353 400 392 358 390 374 0

60015 404 540 440 465 449 441 418 441 466 430 1

60016 373 290 372 442 318 456 334 330 399 325 5

60017 400 333 407 389 471 411 360 471 409 517 9

60018 428 347 425 422 392 403 357 531 370 459 7

60019 274 242 327 355 281 340 301 274 304 261 3

60020 395 407 413 428 517 450 399 456 422 446 4

J. E. Smith 25 10/26/2023

a) Error rate

b) Cost as measured by synapse count

Figure 24. Error rates and costs for networks as segment counts are varied.

Adaptivity

To illustrate adaptivity when inputs change at the macro level, the patterns are transposed after the first

30K inputs. See Figure 25. There is an immediate increase in error rate as expected, but after about 7K

inputs, error rates are reduced to the same levels as in the original 60K + 10K simulations.

Figure 25. Error rates per 1000 inputs, where the 60K+10K input stream is transposed after the

first 30K inputs.

J. E. Smith 26 10/26/2023

7. Discussion

The proposed neuromorphic architecture is simple and easy to understand. It starts with basic point

neuron functionality, “segments” in the active dendrite model, and combines segments to form dendrites

that are capable of clustering input patterns. For learning it uses SDP, a binarized version of the classic

STDP. Consequently, learning is localized, and online operation comes naturally. Furthermore, although

not explored in this document, recurrent networks require no special handling.

As discussed in Section 1.3, SNNs have been widely studied for many years, so it is natural to ask what

sets this model apart.

• An active dendrite model [15], although not original in this work, has yet to be widely adopted. It is

significantly more powerful than a point neuron, yet most SNN research continues to use the point neuron

model.

• A segment that is akin to the classic point neuron, except it does not fire spikes, rather it emits the value

of the dot product. A WTA unit then uses these values to select a winner, and in the process, triggers SDP

updates.

• Constant weight codes (or nearly constant weight) that are also sparse. If number of spikes is constant,

a surrogate for the centroid distance is the sum of the weights for the spike inputs. If only weights for

spike inputs are summed and spike inputs are sparse, then the number of weights to be summed is

relatively small, which leads to high efficiency.

• A voting mechanism employing independent CV units that essentially withhold votes for the most

unlikely labels, thereby predicting the correct label with the fewest “no” votes.

• Networks for clustering and classification that are only one layer deep, but very wide. This goes against

the machine learning trend toward deep networks. It is speculated that as these networks are scaled up,

they will grow in width and not in depth.

7.1 Seminal Prior Research

As pointed out in the introduction, many individual elements of the model were first proposed years ago.

It is the way the components are combined that sets this model apart.

A point integrate-and-fire neuron was proposed by McCulloch and Pitts over eighty decades ago [24]. A

similar function is performed by a segment in this work, instead of firing a spike when the threshold is

reached, a segment passes its value to a WTA network, and the WTA network outputs the segment with

the highest value. This mechanism allows segments to interact and provides greater overall functionality

than if the segments independently emit binary values. This interaction via WTA is key to implementing a

clustering function.

The dendrite functionality was anticipated about 25 years ago by Natschläger and Ruf [25] who

combined point neurons with a WTA network [27] to implement a clustering function.

The learning rules used in the model are more-or-less binarized versions of STDP as studied 25 years ago

by Bi and Poo [10], and Gerstner et al. [13].

Much of the prior research that employed point neurons feeding a WTA unit is based on temporal spike

encoding [19]. Research by the Thorpe group [22][23] used SNNs with STDP for updates, and arguably

reached the high water mark for this type of network.

Most of the author’s prior work [1]-[8] followed the Thorpe lead and employed temporal coding. The

model used here is essentially a degenerate temporal model where the temporal precision is reduced to 1

bit. Consequently the temporal model becomes a binary model. With a temporal spiking model, the

function of generating an output spike is realized as the summation of temporal response functions [14]

J. E. Smith 27 10/26/2023

where weights determine the amplitudes of the functions. With a single bit of temporal precision, this is

reduced to summing weights directly.

With active dendrites [15], groups of parallel clustering dendrites are controlled by enable signals

(proximal inputs) that allow multiple dendrites to act in concert. When active dendrite outputs are

combined via a voting mechanism, they implement supervised classification. Labels are mapped to

proximal inputs that enable each dendrite to cluster shared context information (distal inputs) associated

with a given label.

The centralized method of tallying votes does not appear to be “neuromorphic”. As proposed by Hawkins

[16], however, connections via apical dendrites can implement a form of distributed voting.

Consequently, if the objective is vote tallying, then the centralized method used here is neuromorphic in

function although not in structure.

7.2 Future Research Directions

This document is focused on the two lower architecture levels shown in Figure 2. A natural research path

is to consider the next higher layers, i.e., continue on a neuromorphic path. A second path is to start with

the two lower layers, which are capable of clustering and classification, and use them to build larger non-

neuromorphic architectures.

Neuromorphic Path

In this work, computation is done at the dendrite level. To form a complete neuron, multiple dendrites are

max-ed together. A CV unit is essentially a neuron having a single dendrite. Networks using multi-

dendrite neurons are employed when constructing minicolumns and macrocolumns as in [9].

In [9], a macrocolumn is constructed of grid and place cells in a manner that is heavily influenced by

Hawkins/Numenta research summarized in [16]. Macrocolumn architecture is demonstrated by

simulating a benchmark based on one used by Lewis et al. [18]. The research benchmark involves a

mouse navigating 2-dimensional environments in the dark (only features at the current location can be

sensed). Because a single macrocolumn can hold multiple environments at the same time, the mouse is

introduced to a sequence of environments, say a few tens, and has the opportunity to explore and learn

each of them. As initial explorations take place, the macrocolumn learns spatial relationships among

features within each of the environments.

Then, the mouse is dropped into an arbitrary environment at an arbitrary location. It first orients itself by

moving about in the environment, associating features it senses with what it previously learned.

Assuming no inherent ambiguity in the environments, this process eventually converges to a unique

feature within a known environment: the mouse is oriented. In the paper, a naive agent is used to illustrate

the basic ability to acquire navigational information from the macrocolumn. A more elaborate agent

employing reinforcement learning is under development [8].

The importance of this research goes beyond navigating a physical space. It is conjectured that all of the

neocortex is based on grid/place cells, and the grid is defined over an abstract conceptual space. Then, if

“thinking is a form of movement” [16], navigating through physical space as in [8] may lead to future

methods for navigating conceptual space – i.e. true brain-like thinking.

Non-neuromorphic Path

If one targets conventional machine learning applications, then the research trajectory of the proposed

neural network paradigm shouldn’t require a decades long path like the one taken during the development

of conventional deep neural networks. A more aggressive approach is to choose a research target that is

at the forefront of today’s machine learning systems.

Given a few million weights, it is shown in Section 6 that the supervised classification system does an

excellent job implementing an online version of the MNIST benchmark. ChatGPT-style LLMs are

J. E. Smith 28 10/26/2023

extremely large, supervised classifiers. Hence, a strong motivation for pursuing LLMs as a research

target is that, given a trillion weights, one can construct networks composed of interconnected clustering

and classifying subsystems (of huge scale). Observe that these subsystems are focused on finding

“similarity”, and LLMs exploit text similarities on a very large scale. The structure of such an LLM is

put forward as wide open topic for future research.

As a whole, such an LLM system would not be neuromorphic – the brain generates streams of words in

an entirely different way. However, the clustering and classifying subsystems are neuromorphic.

8. References

[1] Smith, J.E., "Efficient digital neurons for large scale cortical architectures." 2014 ACM/IEEE 41st Annual

International Symposium on Computer Architecture (ISCA), pp. 229-240, IEEE 2014

[2] ______, "Space-time computing with temporal neural networks." Synthesis Lectures on Computer

Architecture 12, no. 2 (2017): i-215.

[3] ______, "Space-time algebra: A model for neocortical computation." In 2018 ACM/IEEE 45th Annual

International Symposium on Computer Architecture (ISCA), pp. 289-300. IEEE, 2018.

[4] ______, "(Newtonian) Space-Time Algebra." arXiv preprint arXiv:2001.04242 (2019).

[5] ______, “Temporal Computer Organization” arXiv:2201.07742v1 (2019).

[6] ______, "A Neuromorphic Paradigm for Online Unsupervised Clustering." arXiv preprint

arXiv:2005.04170 (2020).

[7] ______,"A Temporal Neural Network Architecture for Online Learning." arXiv preprint

arXiv:2011.13844v2 (2020).

[8] ______, "Implementing Online Reinforcement Learning with Temporal Neural Networks." arXiv preprint

arXiv:2204.05437 (2022).

[9] ______, “A Macrocolumn Architecture Implemented with Spiking Neurons,” arXiv:2207.05081v2 (Feb.

2023).

[10] Bi, Guo-qiang, and Mu-ming Poo. “Synaptic modifications in cultured hippocampal neurons: dependence

on spike timing, synaptic strength, and postsynaptic cell type.” The Journal of neuroscience 18, no. 24

(1998): 10464-10472.

[11] Chung, Jason E., Jeremy F. Magland, Alex H. Barnett, Vanessa M. Tolosa, Angela C. Tooker, Kye Y. Lee,

Kedar G. Shah, Sarah H. Felix, Loren M. Frank, and Leslie F. Greengard. "A fully automated approach to

spike sorting." Neuron 95, no. 6 (2017): 1381-1394.

[12] Fries, Pascal, Danko Nikolić, and Wolf Singer. "The gamma cycle." Trends in neurosciences 30, no. 7

(2007): 309-316.

[13] Gerstner, Wulfram, Richard Kempter, J. Leo van Hemmen, and Hermann Wagner. "A neuronal learning

rule for sub-millisecond temporal coding." Nature 383, no. 6595 (1996): 76-78.

[14] Gerstner, Wulfram, and J. Leo Van Hemmen. “How to describe neuronal activity: spikes, rates, or

assemblies?” In Advances in neural information processing systems, (1993): 463-470.

[15] Hawkins, Jeff, and Subutai Ahmad. "Why neurons have thousands of synapses, a theory of sequence

memory in neocortex." Frontiers in neural circuits (2016): 23

[16] Hawkins, Jeff, A Thousand Brains: A New Theory of Intelligence, Basic Books, 2021.

[17] LeCun, Yann, Léon Bottou, Yoshua Bengio, and Patrick Haffner. "Gradient-based learning applied to

document recognition." Proceedings of the IEEE 86, no. 11 (1998): 2278-2324.

[18] Lewis, Marcus, Scott Purdy, Subutai Ahmad, and Jeff Hawkins. "Locations in the neocortex: a theory of

sensorimotor object recognition using cortical grid cells." Frontiers in neural circuits 13 (2019): 22.

[19] Maass, Wolfgang, “Networks of spiking neurons: the third generation of neural network models.” Neural

networks 10.9 (1997): 1659-1671.

[20] MacQueen, J. "Classification and analysis of multivariate observations." In 5th Berkeley Symp. Math.

Statist. Probability, pp. 281-297. Los Angeles LA USA: University of California, 1967.

J. E. Smith 29 10/26/2023

[21] Mainen, Zachary F., and Terrence J. Sejnowski. “Reliability of spike timing in neocortical neurons.”

Science 268, no. 5216 (1995): 1503-1506.

[22] Masquelier, Timothée, and Simon J. Thorpe. "Unsupervised learning of visual features through spike

timing dependent plasticity." PLoS Comput Biol 3, no. 2 (2007): e31.

[23] Masquelier, Timothée, and Simon J. Thorpe. "Learning to recognize objects using waves of spikes and

Spike Timing-Dependent Plasticity." In Neural Networks (IJCNN), The 2010 International Joint

Conference on, pp. 1-8. IEEE, 2010.

[24] McCulloch, Warren S., and Walter Pitts. "A logical calculus of the ideas immanent in nervous activity."

The bulletin of mathematical biophysics 5, no. 4 (1943): 115-133.

[25] Natschläger, Thomas, and Berthold Ruf. “Spatial and temporal pattern analysis via spiking neurons.”

Network: Computation in Neural Systems 9, no. 3 (1998): 319-332.

[26] Purdy, Scott. "Encoding data for HTM systems." arXiv preprint arXiv:1602.05925 (2016).

[27] Thorpe, Simon J. “Spike arrival times: A highly efficient coding scheme for neural networks.” Parallel

processing in neural systems (1990): 91-94.

J. E. Smith 30 10/26/2023

Appendix 1: Schematic Notation

The schematics in this paper employ a concise, unambiguous notation in place of conventional equations.

They convey the same information in a form that is easy to visualize.

Schematic networks operate on scalars, vectors, and 2-d arrays. Figure 26 contains operators that operate

only on lines, so the number of block inputs and outputs are always the same. All indexing begins at 1.

Figure 27 contains more complex operators on single lines, including synchronized buffering.

Figure 26. Schematic blocks that operate on lines. a) In general, lines carry 2-d arrays, denoted as

#rows / #columns. b) If the number of rows is 1, i.e. 1 / #columns, this is simplified to #columns. A

scalar has one row and one column, 1/1, and is denoted as 1. c) a concatenation operator that

merges a vector of p lines with a vector of q lines to form a vector of p+q lines. d) A vector of p+q

lines is split to form a vector of p lines and a vector of q lines. e) The special case where p scalars are

merged to form a size p vector. f) A size p vector is split into p scalars (size 1 vectors).

6/4

6 rows/4 cols 1/p

p

(a) (b)

(e) (f)

p

1

1

p

1

1

(c) (d)

p

q

p+q p+q

p

q

J. E. Smith 31 10/26/2023

Figure 27 Schematics for operations on lines. a) the transpose of a 2-d array. b) a single cycle

buffer, c) a sequence of q cascaded buffers, each buffer holding a vector of size p.

Examples of schematic functional blocks are in Figure 28. Inputs always enter from the left side of a

block and exit the right side. The operation to be performed is a function of both the given operator and

the dimensions of the inputs and the outputs. All lines leaving a block are labeled with their dimensions,

and these labels are an essential part of a schematic. For non-commutative operations, such as division,

subtraction, and matrix multiplication, the first operand is the top input to the block.

(a) (b)

(c)

p/q q/p
B

p p

B
p

p

q/p

B

J. E. Smith 32 10/26/2023

Figure 28. Examples of functional blocks. Three versions of the max operation are shown in a), d),

and g). The operator notation (max) is identical for all 3. However, the numbers of inputs and

outputs imply the specific version of max. The max in a) reduces the q input lines to their maximum

value, output as a scalar on a single line. The max in d) performs the max of a size q input vector

and a scalar, producing an output of q lines. Finally, in g) a component-wise vector max is

performed. A 2-D matrix multiplication consisting of a × followed by + is illustrated in b). The

blocks e) and h) are different versions of multiplications with the type of operation being deduced

from the input and output line sizes. Operations involving predicates, as in f) and i) always produce

bit vectors as outputs. The find first non-zero operator c) is essentially a generalized priority

encoder. The output is a vector whose kth component equals the value of the kth of the input

vector, where k is the smallest index of a non-zero component in the input. If there is no non-zero

component in the input, then the output is set to all zeros. A similar function (not shown) passes a

single pseudo-randomly selected non-zero input component k to output component k.

Values passed on lines may be either bits or integers (ints). This is noted below each line as illustrated in

Figure 29.

Figure 29. Schematic example – a segment. A 1×p bit vector x is multiplied by a p×1 integer vector

(Weights). The resulting product is an integer scalar. This product is compared with an integer

threshold value θ. The result is a single bit which is multiplied by the product to yield the output.

The output is an integer that is equal to the product if it is greater than the threshold, otherwise it is

0.

max 1q

a) q to 1 max

max

q

g) element-wise max

q

q

max

q

d) element-wise max
with scalar

q

1

q

q

1
X

q

q

q
X

e) element-wise multiply
with scalar

h) element-wise multiply

q
X +

q/r

p/q

p/r

b) 2-D matrix multiply

1st
q q

c) Find first non-zero

q

q

1

q

q

q

f) element-wise compare
with scalar

i) element-wise compare

X +

θ

X

1

1
x

segment

p

1

1

bit

int

int

bit

int
z

Weights
p/1

int

