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Abstract—Reverse-engineering the human neocortex has been
a grand challenge in machine learning and computer archi-
tecture. Although deep neural networks, born from this chal-
lenge, have achieved remarkable success, they resort to intense
biologically implausible statistical processing on large datasets
resulting in exponentially increasing compute demand. Recent
neuroscience research suggests Cortical Columns as the fun-
damental processing units in the neocortex that encapsulate
intelligence. This abstract presents ongoing research focusing on
building such Cortical Columns Computing Systems (C3S) as a
first step towards a silicon neocortex with brain-like capabilities
and efficiency. Initial findings indicate that designing extremely
energy-efficient intelligent C3S-based sensory processing chiplets,
using off-the-shelf CMOS technology, is quite feasible and very
promising, and certainly warrants further research exploration.

Index Terms—neuromorphic computing, cortical columns,
temporal neural networks, online sensory processing

I. INTRODUCTION AND BACKGROUND

Human brain (neocortex) is highly adept at sensory process-
ing tasks. Current deep neural networks (DNNs) are attempting
to replicate such human-like sensory processing but using
conventional hardware that employ Turing computation model
and von-Neumann computer architecture targeting numerical
computation. DNNs have achieved excellent results in visual
object recognition, natural language processing, etc. However,
the computation required is increasing at an exponential rate.
Many believe this trend is not sustainable and an alternative
paradigm is needed [9].

Neuromorphic spiking neural networks (SNNs) offer an
alternative approach to AI compute, based on brain-inspired
principles and brain-like architecture. Temporal Neural Net-
works (TNNs) [7] emerged recently as a more biologically
plausible approach utilizing efficient temporal encoding, local
spike timing dependent plasticity learning and neocortical
hierarchy comprising of synapses, neurons, (mini)columns,
and layers. Further, Hawkins’ new theory on intelligence
[2] proposes Cortical Columns (CCs) as the fundamental
neocortical processing units. Higher forms of intelligence
involve result from larger number of CCs. The neocortex
gains its intelligence through CC’s ability to model sensory
information in structured Reference Frames (RFs), and learn
complete models of objects through predict-sense-update feed-
back loops. There is synergy between CCs and TNNs; CCs
resemble TNNs with recurrence, embodied in the RFs.

This paper presents our ongoing research in designing and
implementing Cortical Columns Computing Systems (C3S),
capable of performing highly energy-efficient online sensory

Fig. 1: Each Cortical Column (CC) consists of five TNN-style
mini-columns: Where, What and Output mini-columns that to-
gether implement the Reference Frame (RF), and unsupervised
and supervised mini-columns comprising the agent. For visual
object recognition, the respective functionalities of the three
RF mini-columns are: derive locations of sensor on the object,
map features to locations, and derive the object ID based on the
feature map. Each CC learns continuously through feedback
(recurrence) by capturing meaningful patterns in its RF.

processing [6]. Unlike many neuromorphic works that focus on
exotic device technologies such as resistive memory, we utilize
standard off-the-shelf digital CMOS targeting near-future mass
market computing. We envision C3S-based neuromorphic sen-
sory processing units (NSPUs) as specialized chiplets that can
be easily integrated into any edge AI compute substrate.

II. CORTICAL COLUMNS COMPUTING SYSTEM

Inspired from Smith’s macrocolumn architecture [8], our
proposed Cortical Column (CC) microarchitecture (shown in
Figure 1) consists of two components: 1) a Reference Frame
that maintains a “map” of the sensory information, and 2) an
Agent that achieves goal-oriented behavior based on informa-
tion from the Reference Frame and the current input signals.
Agent comprises of two TNN-type mini-columns performing
unsupervised clustering and supervised classification.

Reference Frame involves three functional modules in the
form of three types of mini-columns: Where, What and Output.
In the context of visual object recognition, the three types of
mini-columns together create models of objects by tracking
locations of features on the object. Output determines the
object identity. Where generates location of sensor on the
object based on feedback from Output and the latest movement
information from the agent. What predicts object features



Fig. 2: Example Cortical Column for Beamforming: What
mini-column within RF maps optimal beam pairs to UE loca-
tions. Unsupervised, supervised and reinforced mini-columns
within agent respectively perform input signal clustering,
optimal beam pair prediction, and UE movement tracking.

based on the result from Where and updates its model based
on the actual sensory input and the feedback from Output.

III. INITIAL TNN RESULTS

We have developed a microarchitecture model and custom
buiding block macros for implementing highly efficient TNN
designs [4], [5]. We illustrated that single TNN mini-columns
can perform unsupervised time-series clustering within 40 µW
power while outperforming majority of the state-of-the-art
works. Further, multi-layer TNNs can achieve state-of-the-art
99% accuracy on MNIST digit recognition within 18 mW
power, while enabling on-chip online fast continuous learning.
More details on these results can be found in [1], [4], [5].

IV. BEAMFORMING AS A KILLER APPLICATION

Beamforming [3] is indispensable to 5G and future 6G
communications, where one or more user equipments (UEs)
need to communicate with a base station via the most optimal
transmit-receive beam pairs. The environmental map of UEs
as observed by a base station can be stored in the RF of a CC,
which can be used to perform the adaptive beamforming task.
We use this as an application driver for our C3S development.

The example CC microarchitecture for beamforming (Figure
2) consists of 1) an agent that keeps track of moving UEs and
learns optimal beam pairs from input signals, and 2) an RF
that stores learned information from agent and infers predicted
beam pairs from UE locations. Here, Where mini-column maps
optimal beam pairs to UE locations. This is a topic of active
research, as part of our C3S effort.

V. FUTURE RESEARCH DIRECTIONS

The overarching goal of our current research is to develop
an end-to-end framework (Figure 3) that can automatically
translate application-specific C3S models in software to highly
customized NSPU chiplets. The framework consists of two
main components: 1) C3S-Sim which consists of a PyTorch
application simulator for C3S functional modeling, and a

Fig. 3: Envisioned end-to-end Cortical Columns Computing
System (C3S) design framework: C3S-Sim consists of a Py-
Torch tool to design application-specific C3S functional mod-
els and a cycle-accurate architectural simulator for hardware
performance estimation. C3S-Syn incorporates the extended
microarchitecture model and functional building blocks for
C3S implementation, with an automated design flow to trans-
late PyTorch functional models to application-specific chiplets.

C++ cycle-accurate architectural simulator for hardware per-
formance estimation; and 2) C3S-Syn that includes PyVerilog
conversion for automated RTL generation from PyTorch, au-
tomated RTL-to-GDSII flow that leverages C3S-specialized
custom macro cells and generates application-specific post-
layout netlist for a specific NSPU chiplet design. We believe
such C3S-based NSPU chiplets can be truly “intelligent” as
per Hawkins’ definition, and can enable contextualization and
personalization of applications and services for edge AI.
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