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Abstract—General Matrix Multiply (GEMM) hardware, em-

ploying large arrays of multiply-accumulate (MAC) units, per-

form bulk of the computation in deep learning (DL). Recent

trends have established 8-bit integer (INT8) as the most widely

used precision for DL inference. This paper proposes a novel

MAC design capable of dynamically exploiting bit sparsity (i.e.,

number of ‘0’ bits within a binary value) in input data to

achieve significant improvements on area, power and energy. The

proposed architecture, called OzMAC (Omit-zero-MAC), skips

over zeros within a binary input value and performs simple shift-

and-add-based compute in place of expensive multipliers. We

implement OzMAC in SystemVerilog and present post-synthesis

performance-power-area (PPA) results using commercial TSMC

N5 (5nm) process node. Using eight pretrained INT8 deep neural

networks (DNNs) as benchmarks, we demonstrate the existence

of high bit sparsity in real DNN workloads and show that

8-bit OzMAC improves all three metrics of area, power, and

energy significantly by 21%, 70%, and 28%, respectively. Similar

improvements are achieved when scaling data precisions (4, 8, 16

bits) and clock frequencies (0.5 GHz, 1 GHz, 1.5 GHz). For the

8-bit OzMAC, scaling its frequency to normalize the throughput

relative to conventional MAC, it still achieves 30% improvement

on both power and energy.

I. INTRODUCTION AND BACKGROUND

A. Deep Learning Accelerators

General matrix multiply (GEMM) hardware, employing
large arrays of multiply-accumulate (MAC) units, is the core
compute fabric for modern deep learning accelerators (DLAs)
[27], [28]. A typical deep neural network (DNN) consists
of convolution, activation, pooling, and fully-connected layers
[12]. Empirical results show that most DNN computation (80%
to 90%) rely heavily on the GEMM hardware in DLAs [9].
Hence, the die area, dynamic power, and energy efficiency of
the GEMM hardware, and in turn, its primary building blocks,
i.e., MAC units, are of utmost importance, especially for edge
devices. This is illustrated in Fig. 1.

Leveraging large number of MAC units, DLAs are dedicated
processors to optimize the compute for DNN workloads. DLAs
are widely deployed in data centers for accelerating both
the training phase as well as the inference phase of diverse
deep learning workloads [24]. One prominent example of such
DLAs is the Google TPU [14], which can employ a 2D array
of upto 256x256 MAC units to perform GEMM on 256x256
matrices.

§Equal contribution

Fig. 1. Illustration of an edge DLA comprising of an array of MAC units
performing DNN inference compute targeting low area, power and latency

B. Importance of MAC Units in DLAs

Multiply-accumulate (MAC) units form the fundamental
building blocks in a deep learning accelerator (DLA), which
are scaled to form large arrays of processing elements (PEs),
or PE arrays, that perform large scale GEMM operations.
Fig. 2 shows the typical DLA system hierarchy consisting
of an array of MAC units. A MAC operation is defined as
c c+(a⇥b). It computes the product of two values (in this
context, the weight and activation inputs of a DNN), and adds
the resultant product to an accumulator (c). A conventional bit-
parallel-based hardware MAC unit consists of a combinational
array multiplier and an adder to accumulate the product, and a
register to store the value. Since scaled arrays of these MAC
units form the compute fabric of the DLA, optimizing the
MAC units can yield a significant reduction in hardware cost
and power consumption of DLAs. Any improvement on the
MAC unit design is replicated many fold in the large number
of MAC units in MAC arrays of typical DLAs. This has led to
a plethora of research efforts on hardware-efficient MACs [29]
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Fig. 2. Typical DLA system level organization with interface to hosting CPU
and memories, and an large array of MAC units as its core GEMM hardware

[34], improved dataflow schemes [5] [6] [19], novel memory
topologies [13] [16], circuit-level optimizations [20] and low-
precision DL compute [4] [7] [11] [25].

C. Industry Trend Towards Low Precision
There are two current industry trends with deep learning:

1) moving to lower precisions for both training and inference
[33], and 2) moving inference from data centers to edge
devices [17]. A recent study from IBM [31] highlights the

trend towards lower precision. They indicate that the precisions
needed to achieve the same accuracy are scaling down (from
2012 to 2018) from 32-bits to 8-bits for training and from
16-bits to 4-bits for inference. They show that the primary
precision format used for training evolved from FP32 to FP16
to FP8, and for inference from INT16 to INT8 to INT4. FP16
format has been widely adopted in the industry, with 16-
bit accelerators showing 4x to 8x speedup in performance
compared to 32-bit designs [26]. Both PyTorch [22] and
TensorFlow [3] support quantized INT8 models, allowing a 2x
to 4x faster compute relative to FP32 [1]. ResNet-101 trained
with 4-bit weights and 8-bit activations has been reported to
incur only a TOP-1 accuracy loss of 2% [18]. Additionally,
training on CIFAR-10 datasets with 5-bit weights and 4-
bit activations has been shown with minimal performance
degradation [21]. Furthermore, successful 4-bit training on a
set of DL workloads has been reported to provide 7x hardware
acceleration over state-of-the-art FP16 systems, with minimal
accuracy losses [26].

The current industry standard for inference has moved
from 32-bit floating-point (FP32) format to 16-bit floating-
point (FP16) and 8-bit integer (INT8) formats. For instance,
NVIDIA TensorRT [30] allows models to be deployed in both
FP16 and INT8 without compromising on accuracy.

D. Industry Trend Towards Edge Inference

Another trend is moving inference from the data center
to edge devices [32]. This has a number of benefits. The
inference latency for the user can be significantly reduced.
Overall network bandwidth required can also be reduced.
There is also the benefit of ensuring personal privacy and
supporting personalized services. However, to support such
edge inference, the on-device DLAs must be extremely energy
efficient and incur significantly lower costs [35]. This is the
main focus of our work: low-cost and energy-efficient DLAs
for low-precision (INT8) edge-based DNN inference.

E. Exploiting Value Sparsity in DL Workloads

Unlike general GEMM computation in other domains, DL
workloads exhibit strong value sparsity, both word sparsity
(zero values) and bit sparsity (zero bits in non-zero values).
Previous works [10], [23] have shown that activations and
weights can be transformed to exhibit up to 50% and 90%
sparsity with only 50% and 10% non-zero values, respectively.
Our goal in this work is to exploit value sparsity to achieve
dynamic power and energy efficiency which can also reduce
the die area cost.

To depict the inherent sparsity of edge inference bench-
marks, we evaluate popular pretrainedv and quantized INT8
models in Section IV on the basis of their bit-sparsity, re-
ferring to the majority of the bits in the 8-bit word being
zeros. The sparsity metric that is generally leveraged for model
compression techniques to increase performance and lower
compute costs is word-sparsity, which refers to the whole
word being zero, in this context 8-bit words are equal to 0.
From our evaluation, it is found that the weight values are
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significantly sparser than the activation values. In this work,
word-sparsity can be naturally leveraged to curb computations
for zero values, just like conventional techniques. However,
bit sparsity is not leveraged by existing MAC hardware and
hence is the focus of our work.

In this research work, we present OzMAC, a novel sparsity-
exploiting multiply-accumulate MAC unit for integer-based
inference, and show improvements in die area, power and
energy, when compared to conventional bit-parallel MAC with
the same throughput. Key contributions of our work are:

• Present a novel OzMAC design for DL inference, capable
of exploiting dynamic bit sparsity to reduce power by
skipping over zero bits in the input binary values.

• Evaluate and demonstrate high bit sparsity for eight state-
of-the-art pretrained INT8 DNN benchmark models.

• Implement a wide range of OzMAC designs using com-
mercial design tools and the current TSMC N5 PDK
(process design kit) for the 5nm process node.

• Generate and evaluate power-performance-area (PPA) re-
sults for various configurations of OzMAC with scaling
of data precisions (4-bits, 8-bits, 16-bits) and clock fre-
quencies (500 MHz, 1 GHz, 1.5 GHz).

• Show the benefits of all the OzMAC designs in simultane-
ously achieving significant improvements in area, power
and energy, at the same clock frequency.

• Demonstrate the significant power reduction of OzMAC
and how this can be leveraged to increase throughput with
frequency scaling.

The paper is organized as follows. We present the OzMAC
microarchitecture in Section II and describe the hardware eval-
uation methodology including commercial tools and libraries
used, in Section III. Next, we perform sparsity evaluation using
eight well-known DNN benchmarks in Section IV, followed
by rigorous performance-power-area (PPA) and energy evalua-
tions for 8-bit designs at 500 MHz frequency in Section V. We
further provide bit-width scaling analysis for OzMAC against
the bit-parallel counterpart for precisions of INT4, INT8, and
INT16 in Section VI, followed by frequency scaling evaluation
in Section VII. Finally, we discuss key conclusions and future
directions in Section VIII.

II. OZMAC MICROARCHITECTURE AND DESIGN

On a functional level, a single MAC operation comprises
of a multiplication and an addition as follows: A * B +
C, where A and B are binary input values and C is the
previously accumulated value. As discussed earlier, this func-
tion is fundamental to all deep neural networks (DNNs) and
hence is implemented as a MAC hardware unit in dedicated
deep learning accelerators (DLAs). Conventional MAC unit
presently implemented in DLAs performs this compute in one
cycle, employing expensive multilplier and is referred to as
“bMAC” in this paper. In this section, we present the proposed
OzMAC architecture and its key components, and highlight its
differences relative to bMAC. It is to be noted that OzMAC
architecture displays significant similarities to existing works
on Stripes [15] and Bit Fusion [25].

Fig. 3. OzMAC Zero-Skipping Compute Algorithm

OzMAC (Omit-zero-MAC) is a novel shift-and-add-based
multiply-accumulate design that is capable of exploiting dy-
namic bit sparsity by omitting or skipping over ‘0’ bits in
the input binary values. Compared to single-cycle bMAC,
OzMAC performs compute over multiple cycles, taking one
cycle for every ‘1’ bit in the input data. The key compute
algorithm is depicted in Fig. 3. Given binary inputs A and B,
in the first compute cycle, it finds the first ‘1’ bit in input A
beginning from the most significant bit (MSB), deciphers its
position and shifts input B accordingly, eventually placing it
in the accumulator. In the next cycle, it finds the next ‘1’
bit in A, skipping over any intermediate ‘0’ bits, shifts B
and adds it to the accumulator. This continues until it goes
through all the ‘1’ bits in A, taking as many cycles as the
number of ‘1’s in A. In the best case scenario when A is
a power of 2, it consumes only 1 cycle similar to bMAC.
On the other hand, when A is of the form 2n � 1, it takes
n cycles. It is to be noted that OzMAC ingests inputs in
bit-parallel format just like conventional bit-parallel MACs
(and unlike bit-serial hardware); the zero-skipping serialization
occurs within OzMAC.

The microarchitecture of OzMAC consists of three simple
functional modules as shown in Fig. 4: 1) Oz-encoder, 2)
shifter, and 3) accumulator (adder and register for storage).
Oz-encoder is a Finite State Machine which keeps track of the
current and next positions of ‘1’ in the input bit pattern. Using
this information, it outputs a one-hot encoded value capturing
the bit positions of ‘1’s every clock cycle for as many cycles
as the number of ‘1’s. For example, as illustrated in Fig. 4,
the input ‘01012’ is encoded as two one-hot values spanning
two clock cycles: ‘01002’ in the first cycle and ‘00012’ in
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Fig. 4. OzMAC microarchitecture with example compute

the next cycle. By doing this, it skipped over the two ‘0’s
and only incurs compute cycles for the ‘1’s. The fundamental
microarchitectural difference between OzMAC and bMAC
designs is the replacement of combinational multiplier with
an encoder finite state machine (FSM) and a shifter. Here, the
number of compute cycles incurred for one MAC operation
by OzMAC is equal to the number of ‘1’s in the input
binary value, different from bit-serial MAC designs where
the number of clock cycles is equal to the bit-width n. The
Oz-encoded input then goes to the shifter and determines the
shift magnitude of the second input. The appropriately shifted
second input is then added to the accumulator value. This is
described in further detail via an example below (also depicted
in Fig. 4).

Consider two inputs: A = ‘01012’ and B = ‘11112’. Input A
is fed into Oz-encoder, while input B is provided to the shifter.
Assume compute begins after a reset, hence accumulator
register will have value 0 stored in it. As there are two ‘1’s
in input A, this computation will execute in two clock cycles,
regardless of the ‘0’ bits and their positions. This is termed as
zero-skipping or zero-omitting.

In the first cycle, the encoder outputs ‘01002’ as the one-
hot encoded value after detecting the first ‘1’ from MSB side.
Based on this output, the shifter left shifts input B by two
positions, owing to ‘1’ positioned at the ‘second power of 2’
in the one-hot value, and outputs a 16-bit value. Therefore, in
cycle 1, the shifter outputs ‘11112 << 2 = 001111002’ which

gets accumulated in the register. In the second cycle, encoder
outputs 00012 to the shifter, but no left shift occurs due to
the zeroth position of ‘1’ in the one-hot value. Hence, shifter
outputs ‘000011112’ to the adder, and the register accumulates
‘001111002 + 000011112 = 010010112’ and passes it as its
final output at the end of second cycle.

In terms of gate complexities, OzMAC scales differently
than bMAC. Accumulator is consistent in both designs and
scales O(n). Hence, the scaling trends between both designs
are largely determined by the multiplication modules. In
OzMAC, the encoder scales O((logn)2), while the shifter
scales O(nlogn) due to the multiplexer-based barrel-shifter
design elaborated. The two functional modules scale relatively
more efficiently than a complex combinational multiplier,
especially for higher bit widths.

The energy consumption of OzMAC depends on two main
factors: 1) power consumption per cycle, and 2) the number
of compute cycles. OzMAC exploits bit-sparsity present in
DL workloads to cut down on the number of compute cycles
by zero-skipping the weight binary values. This inherent
advantage of this novel MAC design ensures that the sparser
the DNN model, the higher the speedup and the lesser the
energy consumption.

It is to be noted that OzMAC can directly replace existing
conventional bMACs as it takes in conventional bit-parallel
inputs just like bMAC (Oz-encoding is performed within the
OzMAC hardware). The only additional overhead needed is
a handshaking protocol to synchronize different MAC opera-
tions, as each MAC compute takes variable number of cycles
depending on the input bit sparsity. This handshaking protocol
is implemented as “ready-valid” signals as part of the I/O
interface for each OzMAC, and we consider this overhead for
all our hardware analysis.

III. HARDWARE FRAMEWORK FOR EVALUATION

We perform rigorous, industry-standard evaluation of the
OzMAC design to get accurate PPA results and energy num-
bers and compare the same to a conventional bit-parallel MAC
design. The PDK (process design kit) and technology library
used for evaluation is the TSMC N5 (5nm) process node, with
Synopsys design tools employed for simulation, synthesis, and
power calculations.

The OzMAC RTL design is first created in SystemVerilog,
with functional verification performed using Synopsys VCS. A
synthetic dataset comprising 1000 sample weights and activa-
tion values is developed, with the values reflecting the sparsity
levels of the DNN benchmarks under consideration. This
allows for the appropriate switching activity to be captured,
as well as resultant average OzMAC compute cycles to be
reported by the means of a testbench.

Consequently, lint check is performed on the SystemVerilog
source file using Synopsys SpyGlass and then synthesis is
performed to convert the RTL-level design into a gate-level
netlist using Synopsys Design Compiler, sourcing TSMC N5
library files. Gate-level netlist simulation is then performed
for verification and collection of the switching activity of the
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Fig. 5. Hardware design process flow for generating OzMAC PPA reports
using Synopsys toolchain and TSMC 5nm library

design in the form of a SAIF dump. The SAIF dump is then
sourced along with the netlist to perform accurate power cal-
culations using Synopsys PrimeTime PX. This design process
flow is illustrated in Fig. 5.

We present sparsity scaling trends for OzMAC in Section
IV to illustrate the correlation between compute latency and
bit sparsity in DNN weights. We report the INT8 inference
PPA results and resultant energy consumption values for
both conventional bit-parallel MAC (bMAC) and OzMAC
in Section V. Further, we report the hardware complexity
scaling in TSMC N5 process node for OzMAC in Section VI,
including PPA and energy values for 4-bits, 8-bits, and 16-
bits precisions at the clock frequency of 500 MHz. Finally, to
evaluate the frequency scaling for OzMAC, we synthesize the
OzMAC designs for differing frequency values (500 MHz, 1
GHz, 1.5 GHz) to show PPA and energy trends as frequency is
scaled. We also scale just the OzMAC frequency to match the
bMAC throughput and show that OzMAC still exhibitt area,
power, and energy benefits at the same throughput.

IV. SPARSITY SCALING ANALYSIS

OzMAC performs highly efficient shift-and-add operations
and trades off latency for lower area and power. The “omit-
zero” capability of OzMAC is key to mitigating this latency
overhead by exploiting dynamic bit sparsity in input data. In
other words, higher bit sparsity (i.e., more zero bits in the input
data) will result in shorter compute latency (in cycle count).
In this section, we perform two types of sparsity evaluations:
1) We derive the compute latency per MAC operation across
varying input bit sparsity for OzMAC and assess the latency
overhead (cycle counts) relative to the conventional (single

Fig. 6. Average cycle count vs. % bit-sparsity. Green-shaded region depicts
the sparsity regions for INT8 workloads from Table I

TABLE I
BIT SPARSITY AND CYCLE-COUNT OVERHEAD FOR PRETRAINED

WEIGHTS FOR EIGHT INT8 QUANTIZED DNN BENCHMARKS

DNN Average number of ”1” bits Bit Sparsity

Benchmark (Actual cycle-count overhead) Percentage

MobileNetV2 2.334 70.83%

MobileNetV3 1.711 78.61%

InceptionV3 2.430 69.62%

ShuffleNetV2 2.583 67.71%

GoogleNet 2.461 69.24%

ResNet18 2.398 70.02%

ResNet50 2.495 68.81%

ResNeXt101 2.289 71.39%

cycle) bMAC; and 2) We use eight pretrained and quantized
INT8 DNN models as benchmarks to assess the typical bit
sparsity present in real DNN workloads.

Fig. 6 plots the cycle count for a single 8-bit MAC operation
for both OzMAC and bMAC, as bit sparsity is increased
from 10% to 90%. The cycle counts for OzMAC are derived
via functional simulation, averaged across 1000 randomly
generated test vectors exhibiting a particular bit sparsity. Note
that bMAC takes only 1 cycle regardless of sparsity. OzMac
incurs 7.2 cycles on average when bit sparsity is only 10%,
which reduces to 4 cycles at 50% and significantly down to
1.2 cycles at 90% bit sparsity. This implies that, in order
to achieve lower energy consumption than bMAC at any
given bit sparsity, OzMAC’s power consumption has to be
proportionally lower to offset the relatively higher latency.
This is discussed in detail in Section V. Next, we analyse the
typical bit sparsity present in real DNN workloads to provide
the context for Section V.
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TABLE II
TSMC N5 PPA AND ENERGY (AVERAGED ACROSS THE EIGHT DNN
BENCHMARKS) FOR 8-BIT OZMAC AND 8-BIT BMAC AT 500 MHZ

MAC Area Power Latency Energy

Hardware (µm2) (mW) (ns) (pJ)

bMAC 25.361 0.084 2 0.167

OzMAC 19.996 0.025 4.76 0.120

% Improvement 21.2 69.7 - 28.0

We use eight pretrained and quantized INT8 DNN models
[2], available as part of PyTorch’s Torchvision library, that
are widely used in state-of-the-art deep learning literature
and MLPerf benchmarking, namely, 1) MobileNetV2, 2) Mo-
bileNetV3, 3) InceptionV3, 4) ShuffleNetV2, 5) GoogleNet, 6)
ResNet18, 7) ResNet50 and 8) ResNeXt101. Layer-by-layer
analysis of the converged weights and activation values result-
ing from running ImageNet [8] inputs illustrate the sparsities
inherent in these benchmarks. For each model, we extract the
average number of ”0” bits in every 8-bit weight value across
all the layers and calculate the bit sparsity as the percentage
of “0” bits over the total number of bits.

These values are summarized in Table I. The highlighted
region in Fig. 6 indicates the bit sparsity range observed in
the eight benchmark models, which results in effective cycle
counts in the range of 1.7-2.5 cycles of compute latency on
OzMAC for these benchmarks. Comparing this to 1 cycle
latency of bMAC, OzMAC’s power consumption must be
1.7-2.5x lower than that of bMAC to achieve lower energy
consumption. Next section provides actual post-synthesis PPA
results using commercial design tools and the commercial
TSMC N5 (5nm) process node to illustrate this point.

Key Takeaway: The intrinsic capability of OzMAC to
exploit bit sparsity dynamically in real DNN workloads, allows
it to significantly reduce the actual latency overhead from the
worst possible case of 8 cycles down to only 1.7-2.5 cycles.

V. OZMAC EVALUATION FOR INT8 INFERENCE

In this section, we compare the PPA of 8-bit OzMAC and 8-
bit bMAC generated using commercial design tools and TSMC
N5 process node for the INT8 DNN benchmarks introduced in
the previous section. Note that the power consumption values
are obtained through the PTPX tool using benchmark-specific
test vectors that capture their bit sparsity characteristics.

Table II provides the die area, power, latency and energy
consumption of OzMAC and bMAC across the eight DNN
benchmark models. The operating frequency for both designs
is 500 MHz. An 8-bit conventional bMAC computes 1 MAC
operation in 2 ns (1 cycle) while consuming about 25 µm2

area, 84 µW power, and 167 fJ energy, whereas OzMAC only
consumes about 20 µm2 area, 25 µW power, and 120 fJ energy
while incurring 4.76 ns latency on average. Compared to con-
ventional bMAC, this amounts to 21% less die area, 70% less
power, and 28% less energy with 2.38x higher latency. This

Fig. 7. Energy consumption vs. % bit-sparsity. Green-shaded region depicts
the sparsity regions for INT8 workloads from Table I

significant improvement in all three metrics can be attributed
to three key factors: 1) simpler shift-and-add hardware with
less area and leakage power footprint, 2) serial Oz-encoder that
enables significant reduction in signal transitions at the input
stage, thereby improving dynamic power, and 3) capability
to exploit the high dynamic bit sparsity present in the DNN
benchmarks (from Table I). Skipping over “0” bits drasti-
cally reduces the latency overhead and decreases its energy
consumption relative to conventional bMAC. For throughput-
sensitive applications, the higher latency of OzMAC can be
addressed via frequency scaling, as will be demonstrated later
in Section VII-B.

Given the power consumption values from Table II, it can be
seen that OzMAC reduces power by 3.36x on average. This
implies that for an 8-bit OzMAC design, it can incur up to
3.36 clock cycles on latency overhead per MAC operation,
before its energy consumption exceeds that of bMAC. We
can calculate the minimum bit sparsity needed for OzMAC
to maintain superior energy efficiency as 1� 3.36

8 = 58%. Fig.
7 plots the energy consumption derived from corresponding
latencies in Fig. 6 across varying bit sparsity, to demonstrate
this cross-over point at 58% sparsity. Interestingly, all eight
DNN benchmarks exhibit bit sparsity in the range of 68-79%,
higher than the threshold of 58% as can be seen from Fig.
7. Significant reduction in power consumption, coupled with
sparsity-induced latency reduction, allows OzMAC to maintain
superior energy efficiency over bMAC even accommodating
multi-cycle latency overhead.

Key Takeaway: OzMAC achieves significant reduction in
area, power and energy relative to bMAC for typical DNN
workloads, by exploiting their inherent bit sparsity.

VI. PRECISION SCALING ANALYSIS

Inference precision for DNN workloads has been trending
from 16-bits in the past to the current 8-bits with projection of
further trending towards just 4-bits. In this section we broaden

6



TABLE III
TSMC N5 PPA AT 500 MHZ ACROSS VARYING BIT PRECISION OF

WEIGHTS AND ACTIVATIONS: 4 BITS, 8 BITS AND 16 BITS

MAC Hardware Area Power Latency Energy

(wgt x act) (µm2) (mW) (ns) (pJ)

bMAC (4x4) 5.451 0.015 2 0.031

OzMAC (4x4) 4.712 0.008 2.794 0.022

% Improvement 13.6 49.4 - 29.2

bMAC (4x8) 9.693 0.031 2 0.061

OzMAC (4x8) 8.3752 0.013 2.794 0.035

% Improvement 13.6 58.5 - 42.0

bMAC (8x8) 25.361 0.084 2 0.167

OzMAC (8x8) 19.996 0.025 4.76 0.120

% Improvement 21.2 69.7 - 28.0

bMAC (8x16) 45.282 0.177 2 0.355

OzMAC (8x16) 30.909 0.041 4.76 0.196

% Improvement 31.7 76.8 - 44.9

bMAC (16x16) 74.199 0.297 2 0.594

OzMAC (16x16) 60.608 0.065 9.28 0.601

% Improvement 18.3 78.2 - -1.2

our experiments to examine the scaling of precision across
INT4, INT8, and INT16 for OzMAC.

So far we assume both the weight and activation values
employ the same precision. Hence both inputs to the MAC
unit employ the same precision format. However one can argue
that one of the inputs representing converged weight values
may not require the same precision as the activation values.
Meaning that the precision for weight values can use a lower
precision format. For example we can use 4-bits for weights
and 8-bits for activations in a mixed-precision MAC design.

In our precision scaling analysis in this section we broaden
our MAC configurations to also include two mixed-precision
MAC configurations, i.e. 4x8 and 8x16, in addition to the INT4
(4x4), INT8 (8x8), and INT16 (16x16) configurations. We use
all five configurations in our precision scaling experiments to
assess the trends in PPA trade-offs for OzMAC and bMAC
designs for all five precision configurations.

Table III provides TSMC N5 PPA for the following five
integer precision configurations: 1) 4-bit weights and 4-bit
activations (4x4), 2) 4-bit weights and 8-bit activations (4x8),
3) 8-bit weights and 8-bit activations (8x8), 4) 8-bit weights
and 16-bit activations (8x16), and 5) 16-bit weights and 16-
bit activations (16x16). The mixed precision configurations,
namely, 4x8 and 8x16, are used to accommodate typical
workloads that demand higher activation precision compared
to weight precision. The corresponding area, power and energy
results are also plotted in Fig. 8, Fig. 9 and Fig. 10 respectively.

Fig. 8. Die area costs vs precision configurations

Fig. 9. Power consumption vs precision configurations

Based on Table III, the smallest (4x4) OzMAC and bMAC
designs consume 4.7 µm2 area, 8 µW power, 22 fJ energy,
and 5.4 µm2 area, 15 µW power, 31 fJ energy, respectively.
In contrast, the largest (16x16) OzMAC and bMAC designs
consume 60.6 µm2 area, 65 µW power, 601 fJ energy, and
74.2 µm2 area, 297 µW power, 594 fJ energy, respectively.
Compared to 4x4 designs, 16x16 OzMAC incurs about 13x,
8x and 27x increase whereas 16x16 bMAC incurs close to 14x,
20x and 20x increase in area, power and energy, respectively.
Both 16x16 designs yield comparable energy even though
OzMAC still possess area and power benefits. This indicates
going beyond 16-bits precision for OzMAC is not beneficial.

From Fig. 8, area for OzMAC and bMAC scale up in
a similar fashion almost linearly with respect to product
of weight and activation bits. However, Fig. 9 depicts how
OzMAC’s power consumption scales much better than that
of bMAC which incurs a much sharper increase as precision
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Fig. 10. Energy consumption vs precision configurations

is scaled up. In terms of PPA improvements relative to
bMAC, 8x16 OzMAC delivers the most area benefit (32%
improvement), whereas the mixed precision 4x8 and 8x16
OzMAC designs offer the highest energy benefit up to 45%.
Mixed precision designs deliver the highest relative energy
improvements, as they can leverage the lower of the two
precisions for Oz-encoding, incurring minimum latency (and
thereby energy) overhead while taking advantage of the lower
hardware complexity of the simpler 16-bit shifter as compared
to conventional bMAC multiplier. Power benefits increase
monotonically with precision due to the serial nature of Oz
computation with signal transitions that get relatively sparser
with higher precision.

Key Takeaway: OzMAC is more area and power-efficient
than bMAC across all precision configurations, and more
energy efficient across all but one (16x16) configuration.
Energy consumption for both designs evens out at 16-bit
weight precision, and would become worse for OzMAC as
weight precision is increased beyond 16 bits due to high
latency overhead.

VII. FREQUENCY SCALING ANALYSIS

In this section, we perform two types of frequency scaling
evaluation to assess the effect of scaling frequency on PPA
trends between OzMAC and bMAC: 1) iso-frequency com-
parison where both designs are compared at the same clock
frequency, for three different clock frequencies (0.5 GHz,
1 GHz and 1.5 GHz), and 2) iso-latency comparison where
bMAC at 0.5 GHz is compared against OzMAC at a higher
frequency where the compute latency (throughput) of both
designs are the same.

A. Iso-Frequency Evaluation

As can be seen from Table IV, OzMAC consumes 50 µW
power and 118 fJ energy at 1 GHz, and only 75 µW and 119 fJ
even at 1.5 GHz. On the other hand, the corresponding values

TABLE IV
TSMC N5 PPA FOR INT8 (8-BITS) OZMAC ACROSS VARYING

FREQUENCIES: 500 MHZ, 1 GHZ AND 1.5 GHZ

MAC Power Latency Energy

Hardware (mW) (ns) (pJ)

bMAC (0.5 GHz) 0.084 2 0.167

OzMAC (0.5 GHz) 0.025 4.76 0.120

% Improvement 69.7 - 28.0

bMAC (1 GHz) 0.166 1 0.166

OzMAC (1 GHz) 0.050 2.38 0.118

% Improvement 70.1 - 28.7

bMAC (1.5 GHz) 0.251 0.667 0.167

OzMAC (1.5 GHz) 0.075 1.587 0.119

% Improvement 70.2 - 29.0

for bMAC are 166 µW and 166 fJ at 1 GHz, and 251 µW
and 167 fJ at 1.5 GHz. As expected, power consumption scales
linearly with frequency and energy stays almost constant since
power increases and latency reduces (due to clock period) by
similar amounts. At all three frequencies, OzMAC improves
power and energy by almost 70% and 29% respectively.

TABLE V
TSMC N5 PPA FOR OZMAC AND BMAC ACROSS VARYING BIT

PRECISIONS AT THROUGHPUT-MATCHING FREQUENCIES

MAC Hardware Freq Power Latency Energy

(wgt x act) GHz (mW) (ns) (pJ)

bMAC (4x4) 0.5 0.015 2 0.031

OzMAC (4x4) 0.7 0.011 2 0.022

% Improvement - 29.2 Equal 29.3

bMAC (4x8) 0.5 0.031 2 0.061

OzMAC (4x8) 0.7 0.018 2 0.036

% Improvement - 41.5 Equal 41.6

bMAC (8x8) 0.5 0.084 2 0.167

OzMAC (8x8) 1.2 0.059 2 0.118

% Improvement - 29.5 Equal 29.6

bMAC (8x16) 0.5 0.177 2 0.355

OzMAC (8x16) 1.2 0.096 2 0.192

% Improvement - 46.0 Equal 46.0

B. Iso-Latency Evaluation
So far this work has demonstrated OzMAC’s potential for

significant area, power and energy improvements over conven-
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tional bMAC at varying bitwidth precision configurations and
varying clock frequencies. However, it is to be noted that these
improvements are achieved at the cost of increased latency
(1.4x for 4 bits and 2.4x for 8 bits). These OzMAC designs
are ideal for edge inference applications that can tolerate
the slight increase in latency (and reduction in throughput)
but with stringent constraints on area, power, and energy
budgets. In this section, we demonstrate that OzMAC can be
used effectively even for higher throughput by scaling up its
clocking frequency.

To bridge the latency gap between OzMAC and bMAC,
we can scale OzMAC’s frequency by the corresponding ratio
to match bMAC’s compute latency and throughput. Table V
provides post-synthesis PPA results on TSMC N5 process node
for bMAC and OzMAC at throughput-matching frequencies
for 4x4, 4x8, 8x8 and 8x16 configurations. The latency gap
for these four designs are reasonably low enough to be closed
via frequency scaling. The 16x16 configuration incurs 4.6x
higher latency and hence is not considered here. The 4x4
and 4x8 configurations can achieve same latency if OzMAC’s
frequency is increased by 1.4x from 0.5 GHz to 0.7 GHz.
Similarly, the frequency for 8x8 and 8x16 OzMAC configura-
tions are increased by 2.4x from 0.5 GHz to 1.2 GHz. Note
that in all cases, bMAC is kept at 0.5 GHz. As can be seen
from Table V, OzMAC can deliver substantial improvements
in power consumption in all cases, even while running at a
higher frequency, with no effect on energy efficiency.

INT4 (4x4) and INT8 (8x8) configurations deliver close to
30% improvement in power/energy, while the mixed precision
configurations (4x8 and 8x16) provide even higher improve-
ments in power/energy by up to 46%. Note that OzMAC
can potentially deliver even higher throughput than bMAC by
leveraging the remaining headroom in power reduction (29%
to 46%) to further increase the frequency.

Key Takeaway: OzMAC maintains superiority in area,
power and energy efficiency at frequencies ranging from
500 MHz to 1.5 GHz, and can leverage relative frequency
scaling to achieve equal or lower latency (hence higher
throughput) compared to bMAC without adversely affecting
its power or energy efficiency.

VIII. CONCLUSIONS AND FUTURE WORKS

This paper presents a novel MAC unit design targeting deep
learning workloads with low precision inference computation.
The proposed design, termed OzMAC, computes MAC op-
eration via a series of simple shift-and-add operations, which
only account for the ‘1’s in input binary value. This skipping of
zeros (or omitting zeros) is a key trait of OzMAC that enables
it to leverage bit sparsity present in DNN workloads. Smaller
the number of ones in a binary value, larger its bit sparsity.
Existing works typically leverage word sparsity arising from
zero values (all bits ‘0’), rather than bit sparsity. OzMAC can
exploit both forms of value sparsity.

Using eight state-of-the-art DNN benchmarks, we demon-
strate the presence of high bit sparsity in real DNN workloads,
underscoring OzMAC’s inherent capability to exploit dynamic

bit sparsity. We implement a wide range of OzMAC designs
using commercial design tools and the current TSMC N5 PDK
(process design kit) for the 5nm process node, and obtain
the power-performance-area (PPA) results for the OzMAC
design with scaling of data precisions (4-bits, 8-bits, 16-bits)
and clock frequencies (500 MHz, 1 GHz, 1.5 GHz). The
OzMAC designs show substantial improvements in all three
metrics: area (up to 30%), power (up to 80%) and energy
(up to 46%) relative to conventional binary bMAC. Finally,
we demonstrate the significant power reduction of OzMAC
units and how this can be leveraged to increase throughput by
increasing frequency without compromising the die area and
energy efficiency benefits.

We believe all deep learning accelerators (DLAs) targeting
low precision (8-bits) inference on edge devices should adopt
the OzMAC design for implementing their large arrays of
MAC units for inclusion in their core GEMM hardware.

There are several promising follow-on tasks for future
works. First is to evaluate a large array of OzMAC units in
an actual DLA to assess the effectiveness of OzMAC at the
system level. This will require dealing with synchronization,
data buffering, and (potentially asynchronous) clocking of the
OzMAC units in a large array of such processing elements
(PEs). Next is to evaluate more real-world DNN workloads
at the system level, accounting for data access from/to the
memory subsystem. Finally, after extensive system-level and
application evaluations, the overarching goal is to do a proof-
of-concept prototype design of an OzMAC based DLA for
inclusion in a mobile System-on-Chip (SoC) targeting DNN
workloads for on-device edge inference.
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