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Abstract 

The macrocolumn is a key component of a neuromorphic computing system that interacts with an 

external environment under control of an agent. Environments are learned and stored in the macrocolumn 

as labeled directed graphs where edges connect features and labels indicate the relative displacements 

between them.  

Macrocolumn functionality is first defined with a state machine model.  This model is then implemented 

with a neural network composed of spiking neurons.   The neuron model employs active dendrites and 

mirrors the Hawkins/Numenta neuron model.  The architecture is demonstrated with a research 

benchmark in which an agent employs a macrocolumn to first learn and then navigate 2-d environments 

containing pseudo-randomly placed features.   

1. Introduction 

The neocortex is an essential part of any biologically plausible brain model. The biological neocortex  is 

constructed of a few million macrocolumns, each consisting of about 100 minicolumns. As put forward 

by Mountcastle [20], the basic macrocolumn structure is uniform across the neocortex.  Although specific 

connectivities and neuron characteristics may differ across cortical regions, macrocolumn operating 

principles remain the same. 

In this paper, macrocolumn functions and implementations are studied in the context of an overall system 

containing an agent that interacts with a model environment.  The role of the agent is described, although 

only a very primitive agent is actually implemented in the research benchmark; the focus here is on the 

macrocolumn. 

A  promising approach to macrocolumn architecture is advocated by Jeff Hawkins and his colleagues at 

Numenta [8]-[12][14], and this paper marks a transition in the author’s research toward the 

Hawkins/Numenta approach to neuron operation and macrocolumn design.  By incorporating the concept 

of  active dendrites  [9], the “spiking neuron” in prior work [25][26][27] is relegated to a spiking dendritic 

segment in this document.   A dendrite is then composed of multiple segments, and a neuron is composed 

of multiple dendrites.   As part of the active dendrite model, neuron inputs are categorized as being distal 

and  proximal, each playing a role in macrocolumn operation. 

Hawkins [12] accepts the Mountcastle uniformity hypothesis and focuses on four principles of functional 

uniformity:  

1) Reference frames are present everywhere in the neocortex. 

2) Reference frames are used to model everything we know, not just physical objects. 

3) All knowledge is stored at locations relative to reference frames. 

4) Thinking is a form of movement. 

The ubiquitous reference frames are implemented by macrocolumns. The Mountcastle uniformity 

hypothesis and Hawkins’s four principles underpin the modeling approach in this document. 

Hodgkin and Huxley [13] developed their famous neuron model by studying squid giant axons because 

their size makes them good candidates for physical experimentation.  Although their research focused on 

a particular type of easy-to-study neuron, the fundamental principles apply to all neurons.  Following that 

philosophy, in this document a basic cognitive architecture is constructed and applied to an easy-to-
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understand research benchmark that involves movement and feature learning in a two dimensional 

physical space.  For this application, the reference frame is a two dimensional grid, and knowledge is the 

presence of features at relative grid locations.  From a researcher’s perspective, a 2-d grid application is 

easy to understand, explain, and simulate. 

“Thinking is a form of movement” applies to all forms of thinking including higher level thinking, not 

just navigation of physical environments (see [11], p. 11). As two examples, “thinking” includes 

mathematical reasoning and language processing. Taken together, the uniformity hypothesis and 

“thinking is a form of movement” strongly suggest that the same structure and principles displayed in the 

2-d grid-based application developed in this paper may apply, at some fundamental level, to all forms of 

thinking.      

1.1 System Architecture 

Macrocolumns are developed and studied as part of an overall system organization depicted in Figure 1.  

An agent generates actions that cause movement in an environment.  As movement occurs, a 

macrocolumn consisting of grid and place cells associates sensed environmental features with relative 

grid locations.   

 

Figure 1. The basic system architecture contains a macrocolumn that supports an agent in pursuit 

of some objective. The agent issues movement commands as it navigates a grid-based physical 

environment.  For a given environment identifier (eId in), the agent learns an association between 

an externally sensed feature, the previous feature, and the relative displacement (Δx and Δy) 

between the two.  The previous feature and displacement are maintained by a grid subsystem 

within the macrocolumn.    Then, when queried by the agent (by providing a target feature) the 

macrocolumn returns the inferred displacement i_Δx and i_Δy between the current feature and the 

target feature. This displacement allows the agent to move directly from its current location to a 

target feature’s location via both internal and external movement signals.  Internal movement, xmove 

and ymove, affects the internal grid subsystem, and external movement affects the location in the 

physical environment.  Internal movements track external movements by design. 

The model agent invokes both internal and external movements.  If the agent is directing movement 

through a physical environment, then an external movement is tracked by an isomorphic movement along 

the internal grid.  However, in some instances the agent may invoke an internal movement only.  This 

might be done when performing “mind travel” [23], for example, when the agent wants to be aware of 

features within its current environment without actually performing the physical movements.  Based on 

the outcome of such mind travel the agent may or may not proceed with the actual external movement.  
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Finally, as noted above, the same basic system architecture can be applied to non-physical environments. 

In that case, all movements may be internal movements. 

In the system architecture proposed here, the macrocolumn does not make movement decisions, rather the 

agent does, so the macrocolumn plays a role loosely analogous to a Q-Table in reinforcement learning 

[33]. As the agent directs movement through an environment, the macrocolumn dynamically updates 

synaptic weights that collectively characterize environmental features and their relative locations as they 

are encountered. After adequate learning, the synaptic weights, through an inference process, provide 

information to the agent as it tries to accomplish a specific objective, e.g., inferred displacements (i_Δx 

and i_Δy) and environment identifiers (eId_out) in the figure. 

1.2 Research Benchmark 

Macrocolumn architecture is demonstrated by constructing a system as shown in Figure 1 containing a 

single macrocolumn.  A demonstration system capable of executing a benchmark suggested by Lewis et 

al. [14] is designed and verified via simulation. 

 

Figure 2. "Mouse in the Dark" A mouse first learns multiple environments, each containing 

randomly placed features.  After learning, when placed at a random place in a random 

environment, the mouse orients itself by identifying its environment and then uses learned features 

to navigate the environment, for example to find a specific feature such as a piece of cheese. 

The research benchmark involves a mouse navigating 2-dimensional environments in the dark (only 

features at the current location can be sensed).   Because a single macrocolumn can hold multiple 

environments at the same time, the mouse is introduced to a sequence of environments, say a few tens, 

and has the opportunity to explore and learn each of them.   As initial explorations take place, the 

macrocolumn learns spatial relationships among features within each of the environments.   

Then, the mouse is dropped into an arbitrary environment at an arbitrary location.  It first orients itself by 

moving about in the environment, associating features it senses with what it previously learned.   

Assuming no inherent ambiguity in the environments, this process eventually converges to a unique 

feature within a known environment: the mouse is oriented.  

In this paper, a naive agent is used to illustrate the basic ability to acquire navigational information from 

the macrocolumn.  Although not described here, a more elaborate agent employing reinforcement 
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learning is under development.  For example, one of the features may be “cheese”, so if the mouse is 

placed in a learned environment in a “hungry” state, the agent employs a navigational strategy that uses 

the macrocolumn to first orient itself and then find the cheese. 

To summarize, the macrocolumn supports three basic tasks under the direction of an agent: 

1) Exploration: It learns environments by encountering features while exploring. 

2) Orientation: When placed in an arbitrary learned environment, it orients itself. 

3) Queries to support navigation: After orientation has taken place, the agent can query the 

macrocolumn to acquire navigational information. 

This paper constructs a macrocolumn architecture composed of biologically plausible spiking neurons 

that provides these three functions in a straightforward manner. 

1.3 Contributions 

The main contributions are the following. 

1) A state machine description of macrocolumn operation – The state machine constructs a directed graph 

representation of environments that is stored in an associative memory. 

2) The implementation of model neurons based on active dendrites – Dendritic segments take binary 

(spike) inputs and integrate synaptic weights, but rather than generating and outputting a spike when a 

threshold is reached, as is commonly done, the total weight is output instead.   

3) Construction and demonstration of a macrocolumn that implements the state machine description with 

model neurons – This is done bottom up by developing models for dendritic segments, dendrites, neurons, 

minicolumns, and macrocolumns.  It is proposed that the macrocolumn uses loops formed by autaptic 

connections as a non-synaptic way of maintaining state for extended periods of time.   
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2. State Machine Description 

In this section, a state machine definition of macrocolumn operation is developed.  This functional 

definition is easy to understand  and in following sections serves as a specification for a detailed 

macrocolumn implementation using neural networks.  First the research benchmark problem is described.  

Then, the state machine description is given in some detail, using the research benchmark as an extended 

illustrative example. 

2.1 Research Benchmark Specifics 

An environment, labeled “α” is shown in Figure 3a.  A mouse (controlled by the agent) is dropped into 

the environment at an arbitrary location (“start” in Figure 3b) and begins exploring the environment at the 

agent’s direction.  The agent explores randomly, encountering features along the way. As it does so, it 

keeps track of its movements by maintaining the net displacements (∆x and ∆y) from the most recent 

feature it has encountered.  When it reaches the next feature, it uses this information to construct and learn 

an edge in a directed graph representation of the environment (Figure 3c). During exploration it may 

encounter the same feature more than once, so a given feature in the graph may have in-degree greater 

than one.  After an adequate amount of learning, the mouse is introduced to a second environment β 

which it also learns.  Here, “adequate amount of learning” is loosely defined.  At a minimum it should 

learn a connected graph, so every feature is reachable from every other feature.  On the other hand, a 

complete graph is likely to be too time-consuming to learn and too expensive to implement except for the 

simplest environments.  

This process is repeated for a second environment β shown in Figure 4.  In Section 8, a total of 40 

environments, each 30×30, are simulated.  

   

a) b) c) 

Figure 3. a) The environment α encompasses a 15x15 grid containing randomly placed features A 

through E.  The coordinates of each feature are shown.  b) Beginning at an arbitrary starting point, 

the mouse explores the environment. c) As it explores, it learns the features and their relative 

locations by constructing a directed graph labeled with displacements from one feature to another.  

In general, the same feature can be visited more than once.   
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Figure 4. A second environment, β, with learned edges. 

After the initial exploration/learning process is complete, the mouse is dropped into an arbitrary 

environment at an arbitrary location.  It orients itself by moving about the environment, associating 

movements and features it senses with the previously learned graphs.   As long as the environments are 

theoretically resolvable using the learned information,  this process eventually converges to a unique 

feature within a known environment, and the mouse is oriented.  

After orientation, the agent can use the learned information to navigate the environment.  If the agent is 

located at a given feature and applies a desired destination (i.e., a target feature) to the macrocolumn, the 

macrocolumn produces the displacement to the destination feature as an output – provided the 

macrocolumn previously learned the labeled edge between the two features.  This displacement 

information allows the agent to move directly to the desired destination feature.   

2.2 State Machine Implementation 

The state machine implementation maintains a state vector that is constantly updated as the agent directs 

movement through an environment.  Specifically, the state machine consists of 1) a state vector, 2) state 

vector update functions, and 3) an associative memory that stores learned state vectors. The 

implementation has three operating modes: 

Exploration: the agent moves the state machine through the environment, and the state machine 

constructs (learns) the directed graph environment as it goes.  The directed graph is stored as a set of state 

vectors held in the associative memory. 

Orientation: beginning at an unknown environment and location, the agent directs movement through the 

environment, and accesses the associative memory as part of a process that determines its environment 

and location. 

Queries (Navigation): the agent queries the associative memory with a target feature, and the associative 

memory returns the displacement from the current feature to the target feature (if it has been learned). 

In discussions to follow, the modes are described and illustrated separately. However, in practice, they are 

not mutually exclusive. For example, exploration (learning) can potentially occur concurrently with 

navigation. 
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State Vector 

As the agent moves through an environment, a state vector consisting of five components is maintained 

within a macrocolumn.  The state vector contains all information necessary for constructing labeled 

directed edges in an environment graph.  The components are: 

eId: the environment identifier 

tail : the feature at the tail of the directed edge 

∆x : the x dimension displacement between tail and head 

∆y: the y dimension displacement between tail and head 

head : the feature at the head of the directed edge 

A state vector is written as:  [ eId  tail  ∆x  ∆y head ].  An example state vector taken from environment α 

in Figure 3 is:  [α C 4 4 B ].  At any given time some of the vector components may be null, for 

example the two displacements are null in state vector [ α C - - B].  If the agent is at a location that 

does not contain a feature then head is null. Furthermore, some components may be ambiguous; for 

example eId is ambiguous in  [α,β C 4 4 B ].  

State Machine Inputs 

eId_in – the current environment from the agent when in exploration mode; otherwise null  

target – from the agent when making a query  

xmove – x dimension movement, from the agent 

ymove – y dimension movement, from the agent 

feature – environmental feature at the current grid location (if there is a feature, otherwise null)  

State Machine Outputs 

eId_out – to the agent; eId_out  is set to the inferred i_eId whenever i_eId ~= null.   

i_∆x  – inferred ∆x,  to the agent 

i_∆y – inferred ∆y, to the agent  

Associative Memory 

Because the associative memory is implemented as place cells in the macrocolumn to be described later, 

it is denoted here as PL. As the agent explores the environment to learn the graph representation, the 

associative memory PL stores edges in the form of state vectors:   

PL ← [state vector]. 

This is essentially a form of one-shot learning –  it is simply a write to the associative memory. However, 

it is important to note that in the PL implementation in Section 7, learning is a biologically plausible, 

incremental update process that accounts for both the current state and what has been learned from 

previous states.  This is the only significant difference between the state machine description given here 

and the spiking neuron macrocolumn implementation. 

Every cycle, PL produces three inferred outputs: i_eId, i_∆x, and i_∆y, although they are not actually used 

every cycle.  The i_eId output is used during the orientation process, and the inferred displacements are 

used during the query/navigation process. 

[i_eId, i_∆x, i_∆y] ← PL ([state vector]) 

The outputs are all null if the head component of the state vector is null.  Otherwise, it produces outputs 

from the PL entry whose components most closely match the state vector’s components.   

State Update Functions 

As the state machine moves through the environment under the direction of the agent, it may encounter a 

feature at a given grid location. The feature serves as the state vector head.  If there is no feature at a 

given location, then feature = null.   
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At each time step, the state vector is updated. State vector update functions for each of the components of 

the state vector follow.  Technically, the variable eId_out is state that is carried from one cycle to the next. 

eId_out: if i_eId ~= null  eId_out ← i_eId 

else  eId_out ← eId_out 

The actual eId that is part of the state vector fed to PL depends on the mode: 

eId:  if explore == 1  eId ← eId_in 

 else eId ← eId_out 

The tail is essentially maintained in its own small state machine: 

tail: if feature ~= null  tail ← feature 

else tail ← tail 

The displacements are reset whenever a new feature is encountered and then accumulate movements until 

the next feature is reached. 

∆x, ∆y: if feature ~= null,  ∆x ← null, ∆y ← null    (reset) 

else  ∆x ←∆x + xmove;  ∆y ←∆y + ymove 

The head is not state that is maintained internally as the other state variables are, rather it depends on the  

feature at the current grid location or is set by the agent to some target feature as part of a query.  

head: if query == 1   head ← target  

else   head ← feature  

2.3 Detailed Example  

Exploration 

Figure 5 illustrates a sequence of movements during the exploration of environment α.  Initially, all state 

vector components except eId  are null.  (In state vectors, null is represented as “-”.) The agent provides 

eId_in, the identifier for the environment about to be learned. The eId_in can be any arbitrary coding; the 

only thing that is important is that each environment has its own unique Id. 

As the agent moves through the grid, the state vector is unchanged until the first feature, C, is reached.  

Whenever the current grid location contains a feature, the displacements are initialized to ∆x, ∆y =[-,-], 

so the state vector becomes  [α - - - C]. Next, there is a single time step pause (zero movement).  At 

the beginning of the pause step, head ~= null, so  tail ← head , and at the end of the step, feature C is at 

both the head and the tail, and the relative displacements are null.  

Then, the agent moves away from the grid location containing C onto a location with no features, so   

head ← null and tail ← tail. The movement  [1,1] yields state vector [α C 1 1 -]. After some 

additional moves, feature B is reached.  In the example sequence, this is shown as a single move [3,3].  At 

that point the state vector components are all non-null: [α C 4 4 B], and the state vector is a complete 

description of the edge connecting C and B in environment α.  The presence of a complete state vector 

triggers its storage in the associative memory PL. 

Exploration continues in the same manner, and PL stores each new edge as it is discovered. Similarly, the 

agent explores environment β.  After exploration, the contents of PL are shown in Figure 6.  
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State Vector Sequence: Exploration 

movement state vector comments 

- - α -  -  -  - initial state 

-1 1 α -  -  -  C first feature reached 

0 0 α C  -  -  C pause; grid cells auto-reset 

1 1 α C  1  1  - move & track displacement 

∙     ∙      ∙ 

3 3 α C  4  4  B feature B reached – store vector 

0 0 α B  -  -  B pause;  grid cells auto-reset 

∙     ∙      ∙ 

-2 -3 α B  -2 -3  - mid-way to next feature 

∙     ∙      ∙ 

-3 8 α B  -5  5  A feature A reached – store vector 

∙     ∙      ∙ 

13 -6 α A  8  -1  D feature D reached – store vector 

∙     ∙      ∙ 

-8 8 α D  0  7  E feature E reached – store vector 

∙     ∙      ∙ 

-7 -8 α E  -7 -1  C feature C reached – store vector 

Figure 5. Exploration of environment α.  The blue arrows indicate the state update sequence: given 

a state vector, a movement is applied, and this leads to the next state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Contents of PL after both environments α and β have been explored.   Contents are 

organized according to head; for a given head, entries are associative. Abbreviations:  e: eId, t: tail.  
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Orientation and Navigation 

Assume orientation begins with PL contents as in Figure 6.  The orientation sequence is in Figure 7. The 

mouse is placed in the β environment at location [5,5].  At that point, it knows nothing regarding its 

whereabouts, so the eId is the union of all the environments (in this case there are only two). The state 

vector is otherwise null.  The agent then begins moving about the environment like it did during 

exploration.  To shorten the example, say that it happens to make the move [-1,1] and encounters feature 

C, and  the state vector becomes  [α,β - - - C].  Because the proximal input is non-null, this is 

sufficient to produce i_eId ← PL([state vector]).   All PL entries with C as the head match state vector 

equally well.  After a single cycle pause for the tail to be updated with the head, both i_eIds remain part 

of an ambiguous state vector  [α,β C - - C]. 

The orientation process continues through a series of movements summarized by the movements [-2,-2], 

and [6,6] so the net movement is [4,4], and feature B is encountered. When PL is queried with            

[α,β C 4 4 B], it happens that both environments have exactly the same edge, so PL again returns an 

ambiguous i_eId.  The orientation process continues, and after a net movement of [-6,1]  a third feature D 

is reached, and the state vector becomes [β B -6 1 D]. This time when PL is accessed, the i_eId is 

unambiguous because only environment β has a completely matching edge.  At this point orientation is 

achieved.  The agent knows it is in environment β at feature D.   

After a one step pause, navigation begins.  The state vector is  [β D - - D], and the agent performs a PL 

query to infer displacements that will take it to feature E.  The agent sets target ← E,  and  i_∆x, i_∆y ← 

PL([β D - - E]) . The best match yields i_∆x = 8, and  i_∆y = -5.  As can be seen in Figure 4, these 

displacements will, in fact, take the agent to feature E. 

  

movement state vector comments 

- - α,β - - - - initial state – any environment is possible; otherwise null 

-1  1 α,β - - - C first feature reached; environment is ambiguous 

0  0 α,β C - - C pause, access PL 

 

-2 -2 α,β C -2 -2 - perform random movement to a featureless grid cell 

∙     ∙      ∙ 

6  6 α,β C 4 4 B continue until second feature reached; environment is ambiguous 

0  0 α,β B - - B pause, access PL 

 ∙     ∙      ∙ 

-6  1   β B -6 1 D third feature reached; environment is β; orientation complete 

0  0   β D - - D pause – then navigate to feature E 

0  0   β D -  - E Apply feature E to PL to get inferred ∆x, ∆y  

8 -5   β D 8 -5 E inferred displacement becomes next movement 

Figure 7. Example of orientation and navigation. Bold underlined values are inferred. 
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3. Implementation: Coding and Synchronization 

Given the state machine description as a starting point, the next few sections lay out a biologically 

plausible spike-based architecture that implements the state machine and associative memory.   

3.1 Coding and Communication 

At system interfaces, information is communicated via spikes modeled as bit vectors. Intermediate values 

internal to the model are often encoded as vectors of low precision non-negative integers.   

Communication takes place over bundles of lines – essentially parallel buses.  Vectors may be formed as 

the concatenation of one or more bundles.   

A state vector is represented as a vector containing 5 bundles. As an example, say there are 4 

environments, 4 features, and an 8×8 grid.  If the state vector components are eId = 3; tail = 2; ∆x = 4; ∆x 

= 3; head = 4, a 1-hot encoding is:   

|0010|0100|00010000|00100000|0001|. 

3.2 Synchronization 

High level neural operation is consistent with Abeles’s synchronous synfire chains [1].  Neurons are 

organized in layers (“pools” according to Abeles) and processing proceeds as waves of spikes (volleys) 

pass from one layer to the next in a synchronized fashion. In a given volley, there is at most one spike per 

line.  

 

Figure 8. An Abeles synfire chain organizes neurons (circles) into layers, separated by synaptic 

crossbars (small triangles). Spike volleys pass from one layer to the next, synchronized via gamma 

cycle inhibition.  Each volley contains at most one spike per line.  As pointed out by Abeles, the 

layout in the figure does not represent the anatomy, rather it represents the processing time 

sequence. Hence, the figure is drawn in an unrolled form for illustrative purposes; in reality, there 

can be any amount of feedback among layers.  For example, the red neuron shown at two different 

points in the chain is the same physical neuron. (Figure taken from Scholarpedia [1]) 

A gamma clock [4] marks off cycles that correspond to discrete computation steps.  A gamma cycle is of 

sufficient length to cover the total time it takes to transmit a spike vector to the synapses of an excitatory 

neuron plus the time it takes for the synapses, dendrites, and neuron body to generate an output spike (if 

any) followed by a pass through winner-take-all (WTA) inhibition (not shown explicitly in the figure).   

γ cycle 
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WTA inhibition coincides with the inhibitory portion of the gamma cycle [3]. In the remainder of the 

paper “step” refers to a gamma cycle. 

4. Neurons with Active Dendrites 

Before proceeding to Section 5 where macrocolumn architecture is described from the top down, this 

section first describes the basic element of computation, the active dendrite.  Active dendrites, as modeled 

here, implement online clustering, and it is a fundamental tenet of this research that online clustering 

underlies all neural computation.  

Spiking excitatory neurons composed of active dendrites are patterned after the HTM neuron model 

described in Hawkins and Subutai [9].  The spiking implementation defined here is not exactly equivalent 

to the HTM implementation but provides the same features and capabilities.  

Briefly, the neuron body is fed by a number of dendrites, on the order of five to seven in a biological 

excitatory neuron, but more or fewer in the model neurons used here. Each dendrite is composed of a 

much larger number of segments or branches, each of which receives a number of distal inputs (see 

Figure 9).  Also associated with each of the model dendrites is a proximal input.  Although one could 

potentially model more than one proximal input per dendrite, in the model developed thus far there is only 

one. Synapses join the inputs to the dendrite, and each synapse has an associated weight.   After learning, 

synaptic weights tend to be bimodal: weights are either close to 0 or a maximum weight, wmax. 

 

Figure 9. Spiking excitatory neuron with active dendrites.  The dark synapses have maximum 

weight, and the lightly shaded synapses have zero weight.   Input spikes on a, c, and A will yield a 

relatively high total weight (reflected in the neuron’s body potential) indicating a good pattern 

match.   An input spike on A only (or input spikes on b, d, and A) will yield a lower body potential 

indicating a weaker pattern match;  Input spikes on a and c without a spike on proximal input A 

yield no output spike.  

The biological rationale articulated in [9] is that a single spike arriving at a distal synapse is unable, by 

itself, to generate a pulse strong enough propagate along the dendrite and increase a neuron’s body 

potential by any significant amount.  Rather, it takes multiple distal spikes in close spatial and temporal 

proximity to generate a strong dendritic pulse that will bring the neuron’s body potential to a level where 

the neuron is primed to spike. Even then a spike on a proximal synapse is required to trigger an output 

spike on the neuron’s axon. 

In the model, a spike on a proximal input is a necessary and sufficient condition for generating a neuron 

output spike.   In a classic spiking neuron model the number of spikes arriving at maximum weight 

synapses determine how quickly the neuron’s body potential rises.  Consequently, the neuron’s output 

spike occurs earlier or later, depending on how many distal input spikes arrive at maximum weight 

.

.

.

d

y

c

A
proximal input 

distal inputs

B
proximal input 

a

b

e
f

g

h



J. E. Smith 13 02/09/2023 

synapses.  The more input spikes with maximum weight synapses, the higher the body potential and the 

earlier the output spike.  In contrast, in this work the model neuron’s output is the body potential, itself, 

rather than a temporal spike. 

As a general interpretation, the pattern of distal input spikes defines a specific context, and a proximal 

spike indicates a specific feature that is present at the specified context.  In the model defined here, distal 

inputs are divided into bundles with each bundle being associated with some part of the context.   

For the mouse-in-the-dark benchmark, there are four distal input bundles:  eId, tail, ∆x. and ∆y.  The 

proximal input is head, the feature where the mouse currently resides. Following subsections describe 

excitatory neuron operation in more detail. 

4.1 Dendritic Segments (Point Integrators) 

PL is an associative memory that stores state vectors in dendritic segments.  Each segment stores a 

specific context encoded in the synaptic weights. An individual dendritic segment implements a point 

integrator as illustrated in Figure 10a.  The point integrator is shown in “einschematic” form in Figure 

10b.   Einschematics are so-named because they draw their inspiration from “einsum” notation commonly 

used in machine learning frameworks.  It is a simple, yet unambiguous, function specification in 

schematic form.  Einschematic notation is summarized in Appendix 1.  

 

a) Example point integrator  

 

 

b) Einschematic for point integrator 

Figure 10. A dendritic segment is implemented as a point integrator.  a) Distal inputs x1 - x4 are 

communicated over a bundle of 4 lines. As spikes, encoded as a bit vector, arrive at the synapses, a 

dot product with integer weights yields the body potential for the given segment.  If the potential 

reaches the threshold value θ = 6, the value of the potential is produced on output z.  b) A general 

point integrator in einschematic form.  Observe that when a multiplication takes place, one of the 

operands is always a bit or a bit vector, thereby simplifying the “multiplication” significantly. The 

annotations “int”, “bit”, and “sparse” are not required, but may be added to specialize the 

functional block implementation according to its inputs’ properties. 
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In prior work by the author, the temporal neuron model is a point neuron.  In this work, a multi-point 

active neuron model is used so individual segments become point integrators. Also, in conventional 

temporal neuron models, the body potential is converted to a spike time. In the point integrator model 

used in this paper, this conversion does not take place, rather the potential, itself, is the output.  This leads 

to an easier-to-understand model that, when combined with a WTA network (next subsection), is 

functionally equivalent to the temporal model.  For this reason information internal to the model (i.e. 

body potential) is in the form of integer vectors, rather than being exclusively bit vectors. Thus, the 

model’s function remains consistent with the temporal model, although the function specification is not 

explicitly temporal.  (See Appendix 2 for a more detailed discussion of this and related issues) 

4.2 WTA Inhibition 

WTA inhibition is a key component of a complete dendrite (see Figure 11). Inhibitory neurons are not 

modeled individually. Rather they are modeled as a bulk WTA process. WTA methods go far back in the 

annals of machine learning, and Thorpe [30] first proposed that WTA inhibition should be performed on a 

bundle of lines carrying temporally encoded spikes.   

 

Figure 11. Schematic for 1-WTA inhibition. The maximum value of a size q integer vector x  is 

found.  The output vector z contains 0s in every component except the component with the 

maximum x value, in that component z is assigned the value in x.  With 1-WTA, if there is a tie, 

then the component with the lowest index is selected (via the “1st” block).  This is a systematic 

method that makes simulator debugging easier. However, in general the “winner” of a tie can be 

arbitrarily chosen, including via pseudo-random selection.  

A WTA inhibition block’s input and output bundles have the same number of lines.  An integer input 

vector on the input lines is translated to an output vector containing only the element with the highest 

value.  Tie cases are handled in one of two ways (although an eventual research objective is to reduce this 

to one).  Most commonly they are handled as 1-WTA described in the Figure 11 caption.  However, an 

alternative to be used in Section 0 allows all tying elements to pass through WTA inhibition (t-WTA).  

4.3 Dendrites 

A complete dendrite (Figure 12) consists of multiple segments, each implemented as a point integrator, 

followed by WTA inhibition. The final output is enabled by a proximal input. The proximal input 

becomes a de facto enable signal because it is a necessary and sufficient condition for the integrator to 

emit an output spike. 

In the research benchmark, each dendrite is associated with a specific state vector head, and the segments 

track the contexts in which the given head feature appears. 
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Figure 12. An active dendrite containing s segments (point integrators enclosed in dashed lines) that 

operate on distal inputs (D).  The point integrator outputs pass through WTA inhibition followed 

by multiplication by a 1-bit proximal input (P).  The dendrite’s final output  (A) is a scalar which is 

the highest potential computed by any of the segments. 

4.4 Excitatory Neuron 

The schematic for the inference portion of an excitatory neuron is in Figure 13, although the distal input 

structure to be used later is a little more complicated than this. The neuron consists of any number of 

active dendrites (q in this case) whose outputs are all max-ed together.  Each of the dendrites is associated 

with a different proximal input, which specifies a feature, and they all share the distal inputs, which 

specify contexts. 

 

Figure 13. An excitatory neuron consisting of p dendrites that share a distal input bit vector (D).  

The proximal input (P) is a bit vector containing p elements, one for each of the dendrites.  The 

outputs of the individual dendrites are integer vectors, the maximum of which is passed through to 

the neuron’s output (N), a scalar integer. 

4.5 Spike Dependent Plasticity (SDP) 

State vectors are stored in the associative memory PL via an online learning process. As noted above, 

state vectors are organized into segments according to the proximal input head.  Storing state vectors in 

PL segments is not a one-shot process as in the abstract associative memory described above.   Rather, 

they are stored via a learning process where multiple applications may be required before the state vector 

is solidly entrenched in a segment. 
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Because a proximal input spike is necessary and sufficient for dendritic activity, all the proximal synapses 

that receive input spikes quickly converge to wmax.  Hence, to simplify modeling, they are implemented as 

a binary enable signal. 

When temporal neurons are modeled, spike timing dependence plasticity (STDP) is commonly used for 

online learning [2] [7].  In this document the temporal aspect has been abstracted away so inputs and 

outputs are binary vectors (one bit of temporal precision).  Note that the following discussion applies to 

point integrators – either dendritic segments or point neurons. The SDP update functions for distal 

synapses are given in Table 1.  Weights saturate at 0 and at wmax.  Although SDP learning is not the focus 

of this document, the motivation behind the method merits some explanation.  First, consider the way that 

backoff and capture control the formation of clusters.  In particular, the relative values of capture and 

backoff affect the distance (or alternatively overlap) between members of the same cluster. That is, once a 

cluster is established and a new input bit vector is applied, whether the new vector should become part of 

an existing cluster or should begin a new cluster is related to the overlap.  

Table 1.  SDP update function for distal synapses.  

xi zj weight update limitation 

0 0 Δwij = 0   

0 1 Δwij = -backoff  wij  ≥ 0 

1 0 Δwij = +search wij  ≤ wb 

1 1 Δwij = +capture wij  ≤ wmax 

To illustrate the way capture and backoff interact, consider the situation where all the bit vectors contain 

exactly m spikes.  (In practical cases this can be relaxed somewhat, but vectors should have 

approximately the same number of spikes). Say the overlap is the minimum number of bits that two 

vectors can have in common in order for them to be assigned to the same cluster.   

Begin with an un-trained system where all the weights are at some baseline value wb . When the first 

vector x1 is applied, all the segments in a dendrite will have a potential of  pot(x1) = mwb, and there is a 

WTA tie.  Arbitrarily segment zi is selected and cluster Ci is established. Because the input vector has m 

ones,  m of zi’s input synapses are increased by capture, and the remainder are decremented by backoff.  

As shorthand in the following equations, let variable v represent overlap, c represent capture, and b 

represent backoff. 

Say the objective is for a subsequent vector to be placed in Ci if it overlaps the first by at least v spikes; 

otherwise, it should be captured by a different segment zj to establish cluster Cj.  At exactly overlap v, the 

total potential for segment zi is:   

 pot(zi) = (wb + c)v  + (wb - b)(m-v)  

  = m wb + cv - b(m-v) 

Meanwhile the potential of all other segments, including zj,  remain at their initial values: 

      pot(zj) = mwb 

For cluster Ci
 to capture the second vector if the overlap is v or less, it is required that: 

  pot(zi) > pot(zj), or 

 m wb + cv - b(m-v) > m wb, or 

 b(m-v) < cv  
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If we fix c = 1, then 

 b(m-v) < v, or 

 b < v/(m-v). 

As a simple example, if the m = 64 and the desired overlap to be in the same cluster is v = 48 or more, 

then the backoff should be less than 48/16 or 3 when capture = 1.   

The search parameter allows clusters to adapt to changing inputs.  Once a segment zi has captured a 

cluster, but the input stream changes so that the cluster no longer reflects the current input stream, zi may 

no longer spike.  Whenever a synapse receives an input spike, but there is no output spike, the synaptic 

weight will be incremented by search (up to some maximum weight wb, where typically wb < wmax).  In 

practice search << backoff and capture.  So all the synaptic weights for zi will gradually creep upward in 

accordance with the new input patterns as long as zi  does not spike.  Eventually, the weights will be high 

enough that zi spikes and a new cluster is captured. Or, if a member of the original cluster appears, zi will 

spike and backoff will decrement the weights of the searching synapses. 

4.6 SDP  

A schematic for  the capture update is in Figure 14. The weight matrix dimensions are  p/q. First, there is 

a  matrix multiplication of input x transposed, a p bit column vector, and output y, a q bit output row 

vector, yielding a  p/q  bit mask.  The bit mask is multiplied by the capture value, and this is added to the 

weights.  Limiting the weight to wmax is done by the min function at the end.  

 

Figure 14. Schematic for SDP capture update.  Example vectors and arrays for a typical update are 

shown. 

All three of the update functions – capture, backoff, and search – can be done in a similar way with 

backoff performing a not function on the x input, and search performing a not on the y input.  These three 

update functions are mutually exclusive so they can be done in parallel with their outputs merged before 

being added to the weight array. This and other details of the design are discussed in Section 7.3.  

5. Macrocolumn Architecture from the Top Down  

Figure 15 is a system schematic that consists of a macrocolumn, an agent, and a model environment.  The 

state vector (SV) is shaded in white. The macrocolumn’s function is divided into two primary sub-

functions.   

Grid cells (GD) – implements a 2-d grid and path integration.  

Place cells (PL) – implements an associative memory as described above.  
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GD and PL are connected together and with the agent via select blocks (cS and dS) described below. 

Synchronization follows the Abeles synfire chain model (Section 3.2).  The gamma cycle boundary is 

shown as a vertical dashed line.  At the gamma cycle boundary, state vector components are synchronized 

with data buffers (B) that function as clocked D latches.   

 

Figure 15. System schematic.  Agent and environment blocks are part of the simulation framework.  

The state vector (SV) is shown at the inputs of PL. 

5.1 Connecting Blocks 

The select blocks (cS and dS) are essentially multiplexors that select from one of two inputs (Figure 16). 

For state vector update operations that depend on a mode, these select the mode-dependent inputs.   The 

control select (cS) (Figure 16a) selects one of two inputs under control of the agent via a two-rail select 

signal.  A [1 0] select input sends the input D0 to the output; a [0 1] selects the D1 input. The data select 

(dS) (Figure 16b) selects the D1 input if it is nonzero; otherwise the D0 input is selected.  
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a) cS block.  

 

b) dS block. 

Figure 16. Select functions.  a) The cS block acts more-or-less as a conventional multiplexor with a 

1-hot control input. b) The dS block selects the D0 input if the D1 input is null; otherwise the D1 

input is selected; new data replaces old data. 

5.2 State: Autaptic Loops 

A guiding principle of biologically plausible spiking neural computation is that only synaptic weights 

hold static state, i.e., state that persists in the same place for relatively long periods of time (many gamma 

cycles).  There is another way to maintain long term state that is not static. It is well documented that a 

significant number of neuron connections are autaptic [22] – that is, the axon of a neuron feeds back to 

one of its own synapses.  This forms an autaptic loop that provides a dynamic mechanism for holding 

state variables.  The macrocolumn in Figure 15 contains three autaptic loops. These hold the tail, eId , and 

displacement (∆x and ∆y) components of the state vector. 

Tail Loop 

Figure 17 is the autaptic loop for the tail state variable.  It implements the state update function: 

if head ~= null  tail ← head 

else tail ← tail 

As long as head remains null the same tail value will circulate around the loop indefinitely. Eventually, if 

a non-null head value comes along, it replaces the current tail, and the new tail is captured in the loop. 
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Figure 17. Autaptic loop that holds the tail state variable.  

eId Loop 

The eId loop implementation is similar to the tail loop implementation. The only wrinkle is that the eId 

loop performs environment disambiguation during orientation, so the loop may contain unions of 

environments rather than a single environment.    This means the eId encoding is not necessarily 1-hot.  It 

is k-hot if the actual environment has been narrowed down to k possibilities.  

 

Figure 18. Autaptic loop that holds the eId state variable.  

Reducing multiple eIds to a single eId is a straightforward form of disambiguation as put forward in [14]. 

This is illustrated in the example of Figure 7.  In that example, PL is initially queried to determine i_eId. 

If there are multiple entries with the same number of state variable matches, then WTA produces multiple 

non-zero outputs. These enter the eId loop by the same process used in the tail loop.  As the agent moves 

on to new features, all the components of the query are filled so a complete state vector is available for 

matching during a query.   This means that only environments with exactly the same edges in their graphs 

pass through a narrowing process.  Unless the graphs are identical, this process will eventually result in a 

single unambiguous eId. 

Displacement Loop 

The displacement loop tracks the x and y grid displacements ∆x and ∆y from the most recently visited 

feature. It is reset under control of the agent, but otherwise it simply holds the most recently computed 

displacements through the gamma cycle. 
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Figure 19. Autaptic loop that holds the ∆x state variable.  The  ∆y loop is similar. The reset signal is 

applied whenever a feature is reached. 

6. Grid Cells and Path Integration 

In the system studied here, the agent invokes actions that cause physical movement through a 2-d 

environment.  Simultaneously, via path integration, the Grid cells (GD) track an analogous movement 

through an internal grid representation.   

Because “all thinking is movement”, when higher level thinking is taking place, the only movement may 

be internal.   Furthermore, even when navigating a physical environment, internal movement can be 

invoked without the corresponding external actions. For example, virtual movement or “mind travel” [23] 

can be used by an agent to plan future actions to achieve some objective. 

The application of grid cells and path integration to high level thinking is clearly a very challenging 

problem. By choosing the problem of physical navigation through 2-d space, many of the big challenges 

are admittedly being sidestepped in favor of demonstrating the basic elements of a complete working 

system. 

As  illustrated in Figure 15, grid cells and path integration are implemented with their own nearly 

autonomous state machines.  Conceptually, grid cells and path integration act as a sort of trip odometer 

that is reset every time a new feature is sensed and, as movement occurs, it tracks net relative 

displacements (∆x and ∆y) until the next feature is reached, at which time it resets and tracks movements 

to the next feature, etc.  The displacement state is maintained in an autaptic loop. 

6.1 Grid Cells 

For the research benchmark, there are two environments: an external physical one and an internal one in 

the macrocolumn grid used for tracking movement.  The fact that both are 2-d spaces greatly simplifies 

the implementation.  

Note that the biological grid system appears to be triangular [19], possibly because physical 

macrocolumns can be packed more tightly if a triangular grid is used.   However, for the problem at hand 

there does not appear to be any computational advantage in using triangular grids, so a Cartesian system 

is chosen here to simplify the implementation. 

In the external space considered in the research benchmark, locations and displacements are specified in a 

two-dimensional coordinate system  (although the concepts extend to a space of any number of 

dimensions and/or coordinate system.)   Agent-invoked movements through the environment occur in the 

external space.  Specifically, external movements are reflected as changes in external space coordinates. 

Displacements in the internal space maintained in GD are encoded as two spike volleys, each 

corresponding to one of the dimensions. Agent actions (the 2-d movements) are also specified with two 

vectors xmove and ymove.  Both displacements and movements use one-hot encodings.  For example, in 
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an 8×8 system, the displacement [3,5] may be represented as two concatenated bit vectors: 

|00100000|00001000|. 

6.2 Path Integration 

An important observation [12] is that all biological macrocolumns implement an internal grid-based 

navigation system that appears to be effectively hard-wired.  That is, it appears that an innate grid 

organization squeezes through the “genomic bottleneck” [35] and is a built-in mechanism throughout the 

neocortex.  Some characteristics may differ from one region of the neocortex to the next, but the working 

hypothesis is that in every region there is an innate grid capable of holding frames of one type or another. 

With one-hot encoded vectors, movements appear as shifts of the displacement vectors, so the model GD 

cells operate functionally as shifters.  Although the GD cells can be implemented via neurons, in the 

model studied here the shift function is implemented directly in the simulator.  

Recall that in the state vector implementation,  ∆x and ∆y update functions are: 

if feature ~= null  ∆x ← null; ∆y ← null 

else ∆x ←∆x + xmove;  ∆y ←∆y + ymove 

Referring to Figure 15, the GD block consists of two wrap-around shifters where the shift counts are 

applied to the P input and the displacements to be shifted are applied to D inputs.  The shift output is held 

in an autaptic loop which feeds back to the inputs. Shifts wrap-around so the grid becomes a biologically 

plausible 2-d torus [5][23], and both positive and negative movements can be accommodated by the same 

shifter. 

When there is a feature at the current grid location, the displacements are initialized to null.  As 

movement occurs from a grid cell containing a feature to featureless grid cells, shifts of ∆x and ∆y track 

the agent-directed movements (xmove and ymove) by performing what are essentially unary wraparound 

additions. 

The capabilities built into the specific shifter(s) depend on the modeled movements.  For example, if 

movements are restricted to at most one grid cell per step, then only single step shifts are implemented.  

For the 2-d system considered here, shifts of any number of grid cells are allowed.  This makes motion 

(and simulations) faster, although in an implementation it will be more expensive.  

6.3 Efficient Grid Cell Encoding 

Grids are based on a 2-d coordinate system.  Each of the dimensions can be 1-hot coded, as just described, 

and this is fine for relatively small systems – 40 x 40, say.  But if we want something orders of magnitude 

larger, say 500 x 500, then 1-hot coding becomes very inefficient and potentially expensive if a large set 

of shift amounts are implemented.  

By example, a solution for the 500 x 500 case is to encode the value of each dimension with three 1-hot 

fields rather than one. To do so, select three field lengths that are relatively prime – 7,8,9, for example. 

There are 7x8x9 =504 unique codings using 7+8+9  = 24 lines.  This is 3 out of 24 sparsity.  If both 

dimensions are encoded this way a total of 48 lines are sufficient for accessing a 504 x 504 space. 

With this scheme, movement of d steps along a dimension is performed by modulo shifting all three 1-hot 

codes by d.    Because the field sizes are relatively prime, single step movements cycle through all 504 

code combinations. 

7. Place Cells (PL)  

For the research benchmark, the complete PL (Figure 20) contains three minicolumns. One for each of the 

three state vector components that are accessed during orientation (eId) and navigation (∆x and ∆y).  This 

design uses multiple-dendrite neurons having a dendrite for each of the proximal inputs.  
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Figure 20. Full PL implementation for research benchmark application.  In this example, multi-

dendrite neurons are organized as three minicolumns. 

7.1 Minicolumn 

The minicolumn used in this work (Figure 21) consists of multiple neurons feeding WTA inhibition.  The 

minicolumn implements a block of associative memory as described in Section 2.2. For each feature 

specified by a proximal input it associates a set of contexts where the given feature appears. The contexts 

are specified by distal inputs. In the research benchmark, each of three minicolumns holds a component of 

the state vector that is associatively accessed.  These are ∆x, ∆y, and eId.   The complete set of state 

variables also includes the tail and the head.  These two are part of the context, but they are never 

retrieved as part of the inference process.  Hence there are three minicolumns in PL.  For all three, the 

proximal input in the research benchmark is head.   
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Figure 21. PL is composed of multiple minicolumns.  For the working example, the minicolumn for 

state variable ∆x  is illustrated here.  There is a neuron for each bit of the ∆x state vector.  The 

feedback of i_∆x  passes through synaptic weights which are updated at the end of each gamma 

cycle before contributing to the subsequent  i_∆x (see Section 7.2).   

In the figure, the minicolumn is for the inferred variable ∆x,  so the output is labeled “i_∆x”.  One of two 

distal inputs is ∆x. Other state variables ∆y, tail, and head in combination form a second distal input.  The 

reason for partitioning the distal inputs this way is that there is no functional reason the distal input ∆x 

and the output i_∆x must use the same encodings; layers of processing separate them. In other words, 

when the learning process proceeds in a natural way the encodings are determined more-or-less 

independently. For implementation simplicity and ease of understanding, however, we would like the 

input ∆x and the i_∆x output to use the same encoding.  This can be guaranteed by forcing the ith bit ∆xi  

to be the only distal input from ∆x that can be stored in a neuron segment that produces the output  i_∆xi . 

Hence, there are two dendritic bundles D1 and D2 that are merged inside the minicolumn.  One is special 

for ∆xi , for the reason just noted. The other contains the concatenation of other distal inputs. 

7.2 Excitatory Neuron 

A minicolumn is composed of one neuron for each bit of the state vector that it is responsible for.  A 

neuron for bit ∆xi  is in Figure 22 and is divided into two components one of is responsible for inference 

and the other is responsible for updating synaptic weights as part of the learning process. 
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Figure 22. A model neuron is composed of two components: one performs inference, and the other 

performs synaptic updates.  They are conceptually separated because they are physically separated 

by minicolumn level WTA which is external to the neuron.  

7.2.1 Neuron Inference 

The neuron subblock responsible for inference is shown in Figure 23. Every cycle a minicolumn receives 

an input state vector and performs inference.  Some of the state vector components may be null, but the 

head, specified by a proximal input, must be non-null for inference to take place. The inference process 

produces a stored state vector that best matches the non-null components of the applied state vector.  For 

the three minicolumns:  

i_∆x, i_∆y ← PL(state vector) 

i_eId ← PL(state vector) 

These inferences are used in two different ways. 

The displacements i_∆x and i_∆y  are inferred when making navigational queries.  Informally, the query 

is: “I am at feature A and want to get to feature B.  What  ∆x and ∆y will get me there?”  For this type of 

query, only the eId and tail components of the state vector are non-null, and the agent sets the head to a 

target feature. Hence, only the eId, the current feature (the tail), and the desired target are given.  After 

passing through WTA inhibition, the ∆x and ∆y of the best matching state vectors are returned as 1-hot 

inferred outputs i_∆x and i_∆y.  Furthermore, the output also includes the segment that yielded the best 

match. This  will be needed for synaptic updates because there are two levels of WTA, one in the neuron 

as shown here, and another in the minicolumn.  In order to perform synapse updates using SDP, the 

segment that initiated an output spike must be known. The segment identifier is selected by a p channel 

cS block (a p input multiplexor with a 1-hot control input). 

The environment Id is inferred during orientation.  As the agent roams an unknown environment the eId 

encodes the union of potential environments. Hence, eId_out is not necessarily 1-hot; it can be many-hot, 

with each of the spikes identifying one of the possible environments.  So, when orientation begins the 

agent sets all the bits in eId_in because any of the environments is possible. Consequently, as the agent 

roams during orientation, the eId is always non-null , as are the three other distal state vector components: 

the tail contains the most recent feature, and ∆x and ∆y contain the displacement from that feature.  When 

the agent is between features, the head is null.  As soon as a feature is reached, the head becomes non-

null and the resulting proximal spike enables inference.  The inference process yields an  i_eId that is the 

union of  the input eIds that are most consistent with the other distal components of the state vector.  This 

is a subset of the input eIds, and in general it will be a proper subset that weeds out some of the potential 
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eIds contained in the input union.  Ideally, as the orientation process proceeds the sequence of proper 

subsets eventually yields a unique i_eId . At that point, orientation is complete: the agent is at a known 

feature located in a known environment.  In a less ideal situation, if the exploration process does not learn 

the environment thoroughly enough or two or more environments are identical, then the eId may remain 

ambiguous.   

 

Figure 23. A neuron inference block contains a dendrite for each proximal input (head). Each 

dendrite contains s segments.   

Example 

In the research benchmark, inputs applied to excitatory neurons are [eId  tail  ∆x  ∆y head], where head is 

a proximal input, and the others are distal inputs.  Consider inference occurring during navigation (see the 

last entry in Figure 7).  The state vector contains a known eId β and a known tail D (the feature where the 

agent currently resides); the displacements are null. The agent would like to find the displacements to 

feature E. Therefore, it performs a query by setting the head to the target (E) and applying the state 

vector: [β D - - E] to the PL inputs (and therefore the minicolumns that hold the displacements). 

Assume learning has been completed and all weights are at either 0 or wmax = 8. Referring to Figure 6, 

there are two state vectors that have E as the head ([α D  0  7  E] and  [β D 8 -5 E ]). The 

second state vector [β D 8 -5 E]has two distal matches β and D. Assuming their weights are wmax = 8,  

the dot product is 16. The other state vector has one distal match and yields a dot product of 8.  Therefore, 

due to WTA, i_∆x, comes from the best matching state vector  [β D 8 -5 E], so i_∆x = 8. Similarly, 

the i_∆y minicolumn outputs i_∆y = -5.  □ 

7.2.2 Synaptic Update 

The neuron subblock responsible for learning is shown in Figure 24.   Control is very simple – there is an 

update at the end of every cycle – potentially a read/modify/write.   In this model, all the weights for 

given dendrite are held in the same memory block.  This is one of many ways of distributing the physical 

synaptic memory.  

The most interesting part of the process occurs in the Dendrite Update sub-block, which is described 

below in Section 7.3.2.   

In this block the weights are read under control of  read/write (R/W) signals and two enable signals (E1 

and E2).  The enable E1 is activate if the subject neuron produced a spike output after minicolumn level 

WTA.  The enable E2 depends on whether this was the dendrite that initiated the spike that passed 

through dendrite level WTA.  If so, weights in the given dendrite should be updated. For a dendrite 

containing d distal inputs and s segments, there are d*s synapses conceptually arranged in a d×s array. 
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Potentially, any of the weights could be updated, depending on what the distal inputs are.  In this case, all 

the synaptic weights are read and sent to the dendrite update sub-block. However, if search = 0, which 

may be the case in some applications, then no updates need to be done for any of the segments except the 

one that caused the dendrite to spike.  Consequently, the 1-hot segment identifer can be used to access a 

single column of weights, because these are the only weights that can be updated. 

 

Figure 24. Neuron synaptic update sub-block.  Updates may occur during any cycle for which the 

mode is explore. 

7.3 Dendrites 

Dendrite operation is split into two subfunctions just as neuron operation is. The inference subfunction is 

part of neuron inference and the dendrite update is part of neuron update.. 

7.3.1  Dendrite Inference 

Dendrite inference was covered in Section 4.3.  The schematic is repeated in Figure 25. The number of 

segments in a dendrite is independent of the other system dimensions, e.g. the sizes of distal and proximal 

inputs.  A key determinant for the number of segments is the number of different contexts in which a 

given feature is expected to appear. 
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Figure 25. Dendrite inference.  

7.3.2 Dendrite Synapse Update 

The update schematic for the capture case is Figure 14.  All three update cases are shown in Figure 26 .  

The cases are mutually exclusive, so their update values are easily merged in the mrg block. Then the 

upper and lower weight bounds (wmax and 0) are enforced before the output is generated.  

 

Figure 26. Dendrite update schematic.  All three update cases are shown. 

7.3.3 The Role of Similarity Clustering 

Note that a single dendrite performs a function similar to a “column” in prior work [25].  In [25], it is 

shown that a “column” is capable of online unsupervised clustering.  A sequence of input vectors is 

applied to a dendrite’s distal inputs, and the dendrite organizes the vectors into clusters based on 

similarity, one cluster per dendritic segment.  Using an SDP method as described above, cluster centroids 

are established and are encoded in the synaptic weights. 

With good clustering, similar input vectors should yield the same output or action.  In effect, similarity 

clustering is a form of lossy compression. With that in mind, observe that the research benchmark 

environments consist of randomly selected features placed at random locations. Randomness is the enemy 

of compression.  Given the randomness in the problem specification, there are few similarities upon 

which quality clustering can be based.  Consequently, in the first implementation of the research 

benchmark, every segment holds a single state vector, and every cluster has a single member, so no actual 

compression is performed.  
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Most real-life situations are not random, and the non-randomness often leads to good clustering 

opportunities. Follow-on research will focus on more realistic problems based on non-random 

environments where the full capabilities of SDP clustering can be better exploited. 

7.4 Summary 

The complete architecture hierarchy for the PL block is illustrated in Figure 27. PL architecture hierarchy 

from top to bottom. 

The function of PL is to learn environments during exploration and then to produce inferred outputs 

regarding the state when orienting or when queried.  

Exploration 

During exploration, the environment being explored, eId_in, is supplied externally – from the agent in this 

system, although it can come from anywhere outside the macrocolumn – and the head is the current 

feature (if there is one; otherwise the head is null).  The agent roams the environment, and whenever head 

is non-null the necessary and sufficient condition for generating neuron spikes in the three minicolumns is 

satisfied and synapses are updated according to SDP rules to reflect the current state vector – an edge in 

the environment graph. 

Orientation 

The  main objective of orientation is to determine the current eId.  Initially, when the eId is unknown, the 

agent forces all bits in eId_in  to be set, indicating that any of the environments is possible. The agent then 

roams the grid and as new features are reached, it applies the current state vector. The i_eId minicolumn 

responds with all the eIds in the current set that are consistent with the rest of the state vector.  This 

eliminates all inconsistent eIds from the set of possibilities until only one potential i_eId remains 

(assuming the learned environments are not inherently ambiguous). 

Queries (Navigation) 

Assuming an unambiguous eId (orientation is finished) and that the system is located at some feature, a 

query consists of applying a target feature, and the PL responds with inferred ∆x and ∆y movements 

(i_∆x, and i_∆y)  that will take the system from the current feature to the target feature, provided the 

associated edge in the environment graph has been learned.  Otherwise, the query will return null values.  

The specific queries that an agent makes and the way that it uses the results depend on the task the agent 

is attempting to achieve.  In this document, the benchmark task is essentially trivial; implementing more 

elaborate tasks are beyond this document’s scope and remain for follow-on research (see Section 9.1). 
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Figure 27. PL architecture hierarchy from top to bottom.  
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8. Simulations 

First and foremost, benchmark simulations demonstrate that the proposed macrocolumn implementation 

works as described.  Going beyond this demonstration, generating results for ranges of parameters and 

configurations, isn’t especially enlightening because of the artificial nature of random environments and 

because a naive agent is used solely for the purpose of  demonstrating a query mechanism that can 

support navigation, not for the purpose of achieving some specific objective. 

8.1 Benchmark Details 

For a set of benchmark simulations, 40 different environments are laid out on a 30×30 grid.  Each 

environment contains the same 10 features pseudo-randomly placed.   The exploration path is designed to 

visit all 10 features four different times in a pseudo-random sequence.   

Simulation consists of an exploration phase and an orientation/navigation phase.  Simulations are further 

divided into episodes and steps.  An episode is an exploration or navigation of a single environment and 

consists of a sequence of 100 steps, or gamma cycles.   To expedite simulations, it is capable of moving 

an arbitrary number of grid cells in a single step. Because there are 40 environments, the simulation 

performs 40 exploration episodes followed by 40 navigation episodes. 

After orientation, the agent initiates queries and movements by first querying with a random target to find 

i_∆x and  i_∆y.  If there is a match in the PL, then the agent performs the inferred movements. Otherwise 

if the inferred movements are null, it tries another random target.  Because the graph is connected, it will 

eventually succeed. 

Because there is no similarity clustering and each segment is expected to hold a single state vector, the 

number of segments per dendrite is an important parameter.   To get a handle on the number of required 

segments, the pseudo-random exploration paths for all 40 environments were first generated so that the 

eventual environment graphs could be determined.   To account for random variations, the maximum 

number of segments over all three minicolumns was determined (skipping the details), and the number of 

segments in the simulator is set to that upper bound.  

8.2 Simulation Results 

Because the number of segments allocated is sufficient to fit all the state vectors (by design), the main 

purpose of simulation is to demonstrate that the model functions as expected. Simulation parameters are 

given in Table 2.  

Table 2. Parameters for benchmark simulations 

threshold θ 8 

initial weights wb 6 

maximum weight wmax 8 

capture 1 

backoff 4 

search 0 

A measured statistic is the number of steps it takes for orientation to complete; see Figure 28.  Because 

there is significant variation in the environments, and movements depend on pseudo-random number 

generator seeds, three different seeds were simulated.   Overall, most episodes infer the correct 

environment/feature in a few steps, although there are some outliers that take as long as 16 steps.  Once 

oriented, accesses to PL during simulated navigation are always correct. 
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Figure 28. The number of episodes required for orientation.   

If the number of segments in the design is not sufficient to hold all the state vectors, i.e. the segments are 

over-subscribed, then navigation failures may occur.  A failure is detected, for example, if the 

macrocolumn gives displacements to a specific feature, but when the agent moves by the indicated 

displacements, the expected feature is not present. However, the macrocolumn is designed to handle such 

failures in a graceful way: when an error is detected the macrocolumn automatically re-sets itself to the 

state where all eIds are valid, re-orients itself, and continues on.    

The plot in Figure 29 is for macrocolumns containing  fewer segments than the calculated necessary 

number for all the state vectors.  The statistic is the fraction of time the agent is correctly oriented after 

the initial orientation: its state vector indicates the correct eId and the feature for its current cell location is 

correct.  For these simulations, the calculated lower bound on the sufficient number of segments per 

dendrite is 16.  Figure 29 gives results for segment counts from 16 down to 4.  Even with only 4 segments 

per dendrite, the agent is correctly oriented over 92% of the time. 

 

Figure 29. Fraction of the steps that the agent is correctly oriented following its initial orientation as 

the number of segments per neuron is reduced. 
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9. Concluding Remarks and Future Research 

The basic macrocolumn learns and constructs directed graphs that describe 2-d spatial environments. The 

macrocolumn maintains a state vector that provides all the necessary information for learning a graph 

edge. It can then query the graph to support navigation.  The model is based on spiking neurons and all 

the macrocolumn inputs and outputs are bit vectors.  

What this document demonstrates is a bare-bones macrocolumn that supports the basic functions of 

exploration, orientation, and querying to support navigation.  If the proposed macrocolumn accurately 

captures the fundamental way the neocortex works, then it can serve as a foundation for ever more 

elaborate brain-like cognitive systems. The bare-bones macrocolumn can also be characterized by its 

limitations:  

1) it does not include significant similarity clustering 

2) it does not support multi-macrocolumn regions or hierarchies 

3) it supports only a 2-d grid that mirrors a 2-d  external environment 

4) it does not support invariance for scaling, orientation, and distortions 

Furthermore, the agent is naive and is not constructed of model neurons.  Following subsections discuss 

future research targeted at removing these limitations.  

9.1 Agents 

In the research benchmark, the agent performs a minimal function: it moves about randomly from feature 

to feature.  This is adequate for demonstrating the macrocolumn’s ability to provide navigational 

information (inferred displacements), but not much else. 

A topic for near-term research is the development of agents constructed of model neurons that strive to 

achieve specified objectives within a given environment.  As a simple example, the presence of cheese at 

a grid point can be one of the learned features.  Then, if the agent’s objective is to find food and the 

mouse is placed at an arbitrary grid point in a previously learned environment, it moves around sensing 

the various features and then, having gotten its bearings, it heads along a near-optimum path (a sequence 

of edges in the environment graph) to the cheese.  Similarly, if one of the features is water and another is 

a warm place to sleep, an agent can direct movement along a previously learned path. Here, the important 

enhancement to the model agent is the ability to learn near-optimal paths by using reinforcement learning 

(RL).  The agent uses RL to learn the best next target for determining the next feature along a path to find 

food, water, or a warm grid point.  

An additional enhancement is implementing an agent  using minicolumn-like spiking neural networks that 

learn via a biologically plausible SDP version of RL.   An RL agent capable of balancing an inverted 

pendulum is described in  [6].  That implementation uses simple point neurons and does not distinguish 

distal and proximal synapses.  By adding proximal synapses, the same RL agent can learn to achieve 

multiple objectives as shown in Figure 30.  
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Figure 30. An agent that uses reinforcement learning to follow optimal or near-optimal paths in 

order to achieve an objective.  

Say the metaphorical space aliens visit earth and examine a state-of-the-art CMOS microprocessor.   Most 

of what they will see is SRAM – multi-level on-chip caches and predictors.  And they may observe that 

the more SRAM, the better the performance (sometimes by huge amounts depending on working set 

sizes). They would then endeavor to discover how an SRAM works, motivated by the belief that it is the 

most important part of the computer.  It is an essential part, to be sure, but the CPU is where the real 

computation takes place – it uses SRAM as a large data structure to support its operation.  

The point is that even if we discover a complete and accurate model for the way the neocortex works, we 

may have only discovered the way “SRAM” works. It may be that the agent is primarily “CPU”.  And 

following this line of reasoning, the real key to understanding cognitive thought may reside in the agent, 

not the neocortex (although the agent may be partially based in the neocortex).   

An RL agent as illustrated in Figure 30 is still relatively simple. What does an agent look like that drives 

language or mathematical processing based on macrocolumn frames?  At a minimum this suggests that 

reverse-architecting research should incorporate the co-design of neocortical architecture and agent 

architecture. 

9.2 Similarity Clustering 

The macrocolumn developed in this document allocates a segment to each distal input pattern (context).  

Although the macrocolumn segments perform similarity clustering, strictly speaking, there is only one 

pattern per cluster.  In a realistic application, the segment is trained to match multiple patterns forming a 

cluster, not just a single pattern.  The synaptic weights in a segment define the cluster centroid.  

Consequently, all the similar patterns belonging to the same segment strongly match the segment’s 

weights and cause a dendritic spike.  Segments perform the same function as neurons in previous work 

[25][26], so implementing similarity clustering in dendritic segments should be straightforward. 

Furthermore, for more realistic clustering benchmarks, environments with structured, non-random 

characteristics can be modeled.  In other words, realistic problems where similarity clustering will offer 

significant benefits. 

9.3 Regions 

In this paper a single macrocolumn is considered.  The next layer of abstraction is a region formed by 

interconnecting multiple macrocolumns.  Figure 31 is a simple schematic for such a method.  
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This type of structure is considered by Lewis et al. [14].  For larger problem sizes, multiple 

macrocolumns operate in parallel, with each working on part of the larger problem – a simple example is 

a very large environment where macrocolumns track overlapping sections of the environment and where 

they collectively reach agreement regarding the overall environment identity via a form of distributed 

consensus (“voting” [14]). 

Within a macrocolumn, the consensus mechanism uses a second set of distal inputs.  Excitatory neurons 

have two biologically distinct sets of distal inputs: basal and apical.  The distal inputs discussed in this 

paper are basal; distal inputs used for distributed consensus are apical [14]. 

 

Figure 31. A region consists of multiple macrocolumns (MC) that observe and move through 

overlapping receptive fields.  A voting, or consensus, network implements distributed consensus to 

determine a region-wide environment identifier. 

9.4 Hierarchies 

Hierarchies are more easily discussed in terms of “objects” rather than “environments”.  For example, 

identifying an object by moving it around in one’s hand is a function very similar to navigating an 

environment. Objects can be composed of features that are sub-objects having spatial relationships [11].  

When reaching into a fishing pack for a fly box, the sharp corners, hinges, and clasp are identifiable 

objects by themselves based on their shapes.  A macrocolumn (or macrocolumns) associates each of these 

objects with an object Id.  At the next higher level of the hierarchy, the fly box as a whole is composed of 

these objects (now sub-objects) that have spatial relationships with each other, and at the higher level, the 

fly box has its own object Id. In Figure 15, the eId is a macrocolumn output that can be used for 

constructing such hierarchies. 
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9.5 Invariance  

To achieve the brain-like ability to recognize objects, symbols, etc. there must be some method for 

implementing invariance with respect scales, rotations, and distortions. (It is already invariant with 

respect to spatial shifts). It seems that a good place to provide invariance is in the GD/path integration 

part of the macrocolumn.  This suggests that various types of conformal mappings are built into the 

GD/path integration system.  Going one step further, if the grid cell interconnection structure is wired-in, 

then that leaves path integration as the prime candidate for implementing invariance.    

9.6 Non-sensorimotor Grids 

Sensorimotor actions involve sensing and moving through a physical environment as studied here. For 

this kind of activity, modeling grid cells and path integration is relatively straightforward because both the 

external environment and the grid use 2-d coordinate systems. 

However,  “all thinking is movement” extends well beyond 2-d physical systems.  For constructing 

macrocolumns suitable for higher level, more abstract cognitive tasks, the research becomes much more 

challenging.  For such higher level cognitive tasks such as language processing, both a grid and a method 

for path integration will need to be discovered.  Solving problems of this type and implementing them 

with macrocolumn architecture will require significant research breakthroughs. See [34] for a survey of 

research on constructing such cognitive maps. 
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Appendix 1: Einschematics 

“Einschematics” draw their inspiration from “einsums”, a concise notation for expressing summations, 

popularized by machine learning frameworks such as PyTorch. 

They are a concise and unambiguous schematic notation for spiking neural networks.   Einschematics 

operate on scalars, vectors, and 2-d arrays.   Figure 32 contains operators that operate only on lines, so the 

number of block inputs and outputs are always the same. All indexing begins at 1.  

 

Figure 32. Einschematic blocks that operate on lines are drawn with dashed lines a) In general, 

lines carry 2-d arrays, denoted as #rows / #columns.  b) If the number of rows is 1, i.e. 1 / #columns, 

this is simplified to #columns.  A scalar has one row and one column, 1/1, and is denoted as 1.  c)  

the transpose of a 2-d array.  d) a concatenation operator that merges a bundle of p lines with a 

bundle of q lines to form a bundle of p+q lines.  e) The special case where p scalars are merged to 

form a size p vector. f) A size p vector is split into p scalars (size 1 vectors). 
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Examples of einschematic functional blocks are in Figure 33.  The operation to be performed is a function 

of both the given operator and the dimensions of the inputs and the outputs.  All lines leaving a block are 

labeled with their dimensions, and these labels are an essential part of a schematic.   For non-commutative 

operations, such as division, subtraction, and matrix multiplication, the first operand is the top input. 

  

 

Figure 33. Examples of einschematic functional blocks.  Three versions of the max operation are 

shown in a), d), and g).  Their given operator (max) is identical for all 3.  However, the numbers of 

inputs and outputs imply the specific version of max. The max in a) reduces the q input lines to their 

maximum value, output as a scalar on a single line.  The max in d) performs the max of a size q 

input vector and a scalar, producing an output of  q lines.  Finally, in g) an elementwise vector max 

is performed.  A 2-D matrix multiplication consisting of a × followed by + is illustrated in b). The 

blocks e) and h) are different versions of multiplications with the type of operation being deduced 

from the input and output line sizes.  Operations involving predicates, as in f) and i) always produce 

bit vectors as outputs.  The find first non-zero operator c) is essentially a generalized priority 

encoder.  The output is a vector whose kth element equals the value of the kth element of the input 

vector, where k is the smallest index of a non-zero element in the input.  If there is no non-zero 

element in the input, then the output is set to all zeros. A similar function (not shown) passes a 

single pseudo-randomly selected non-zero input element k to output element k.   
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Examples of functional blocks are given in Figure 34.  The notes “integers” and “bits” are not a 

requirement, but they could be added optionally to specialize the functional block implementation 

according to its inputs’ properties.  Similarly, notations of “sparse” or “dense” may be added for 

specializing functional block implementations.  

 

a) Dendritic segment consisting of a single point integrator.   Annotations regarding 

type (bit/int) and sparsity are not part of the functional specification.  They provide 

implementation information, i.e., the implementation of the function may be 

optimized to best suit the properties of its operands. 

 

b) WTA block. Ties are selected by using the least index of the tying inputs. 

 

c) A dendrite consisting of multiple dendritic segments. 

Figure 34. Einschematic examples: three functional blocks. 
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Appendix 2: Relationship to Prior Work: Temporal Communication and Processing 

In a temporal neural network model [25]-[29] values are encoded and communicated as temporal volleys 

(vectors) where vector elements correspond to relative spike times.  Infinity is used when there is no spike  

(see Figure 35a).   A temporal encoding has a given precision; in Figure 35a where spike times vary from 

0 to 7 there are 3 bits of temporal precision.    

The temporal precision that can be maintained in a biological system has a significant bearing on its 

computational capabilities and the complexity of the computational processes.   Generally speaking, with 

respect to a hardware implementation, the lower the precision, the lower the implementation complexity.  

If this is taken to an extreme, one bit of temporal precision should yield the simplest system.  A single bit 

of temporal precision yields a binarized communication model (Figure 35b), where spikes are represented 

as binary 1’s and non-spikes as 0’s. 

In exchange for the simplicity of a single bit of temporal precision, an important issue is how much 

computational capability is lost in the process.  This is addressed in following paragraphs. 

 

 

a) b) 

Figure 35. Spike volleys.  a) Temporal volleys: a spike indicates the presence of a feature, and the 

time of a spike indicates the feature’s relative strength, with 0 being the strongest. b) Binarized 

volleys: features are either present (1) or absent (0).  

Temporal Neuron Implementations 

With temporal modeling, point neurons are typically modeled with some form of Spike Response Model 

(SRM) proposed in 1994 by Gerstner and van Hemmen [6].  A simple form (SRM0) is illustrated in 

Figure 36.  In the SRM0 model, input xi connects to the neuron body via synapse i having weight wi.  1) if 

there is a spike on xi, then the value (time) of the associated synaptic weight wi selects a pre-defined 

response function; 2) in the neuron body, the synaptic response functions are summed (integrated), 

yielding a net body potential; 3) when, and if, the body potential reaches a threshold value q, a spike on 

output z is produced at that time. 

time

tmin = 0  

x1

x2

x3

x4

values

0

7

3

  

73

features
x1

x2

x3

x4

values

1

1

1

0



J. E. Smith 43 02/09/2023 

 

Figure 36. SRM0 neuron model. 

A number of different response functions have been used by researchers over the years (Figure 37). In the 

course of prior research, the author has progressed through each of these.   Early on, a biexponential 

response function was used (Figure 37a); it is the more biologically accurate.  Then, the biexponential 

was approximated with the piecewise linear version (Figure 37b), proposed by Maass [16].  It is this 

version that is used in the book [29].  In subsequent research, this was replaced with the ramp-no-leak 

version in [25]-[27].  The reasoning behind this simplification is that the negative slope due to neuron 

body leakage is only a reset mechanism and is not a part of active computation.  

   

 

Figure 37 Four response functions.   

Binary Neurons 

Assume neural networks that take binary vectors as inputs and consider an SRM0 neuron implementation 

with a ramp no-leak response function.  

In practice, synaptic weights typically stabilize in a bimodal distribution (close to 0 or wmax). This means 

that in most cases the response functions for non-zero synapses are the same.  For weight wmax, assume a 

ramp response function ρ(t) = 1 + t ; t ≥ 0. With binarized inputs, all ramp responses begin at t = 0. 

Assuming m spikes are input to maximum weight synapses, the body potential v is the sum of m response 

functions  v(t,m) = m + m*t . An output spike is produced at the time the threshold  q is reached; for m 

matches, define this to be tm , so the condition for outputting a spike is: m + m* tm ≥ q . Because times are 
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integers in the model: tm = ⌈ q/m ⌉ - 1. This is an inverse relationship: the spike time is inversely related to 

the number of matches (i.e., the total potential). 

We can take advantage of this relationship by using the total potential as a neuron’s output and spare the 

effort of computing the inverse.  Furthermore, when winner take all (WTA) inhibition is performed over a 

set of parallel neurons (a “column” in the cited prior work), spike time ties are broken by taking the 

highest body potential amongst the tying neurons. This means that the body potential has to be passed to 

WTA, anyway. Consequently, it may be computationally simpler to compute and output the body 

potential directly and let WTA operate over body potentials.  The WTA output can then be binarized, or, 

alternatively the body potential can be passed on to downstream processing. This is consistent with the 

more conventional temporal neuron implementation, and, in effect, models a temporal system, albeit at a 

higher level of abstraction where the temporality is abstracted away. 

If a neuron takes binarized inputs and outputs body potential, a bimodal weight distribution means that 

virtually any well-behaved SRM0 response function (e.g. all those in Figure 37) will work.   This being 

the case, one can use a step no-leak response function (Figure 37d). And this, in turn, is equivalent to 

taking a simple dot product of a binary input vector and the weights.  

In a binarized system where the temporal precision for inter-neuron communication is a single bit, intra-

neuron computation can employ significantly higher precision; six to eight bits, say.  That is, a 

computational block containing neurons and WTA inhibition can take binary input vectors and produce 

binary output vectors, but use higher precision integer vectors internally -- when forming the dot product 

of binary inputs and weights, for example. 

Finally, it is important to note that with binary inputs both the temporal method using a ramp no-leak 

response function and the binary dot product computation method are equally accurate when combined 

with WTA inhibition where ties are broken based on body potential. The choice of which to use depends 

on the implementation technology and engineering tradeoffs. 

Plausibility 

There is an important plausibility issue regarding the precision of inter-neuron temporal communication. 

That is: how much precision can be maintained as spikes pass from neuron to neuron?   

If we assume that inhibitory gamma cycles [4] separate each neuron-to-neuron communication, then the 

window for temporal encoding is about 5-10 msec., because the gamma cycle is 50-100 Hz and half the 

cycle (at least) is consumed by the inhibitory phase. Experiments such as Mainen  and Sejnowski [15] 

show that if an excitatory neuron is repeatedly stimulated with the same input pattern, then the output 

spike times repeat to within 1 msec.   This implies individual neurons are capable of 2-3 bits of temporal 

precision, so it may be possible to maintain 2-3 bits of accuracy for intra-neuron processing.   

Next consider the inter-neuron level.  A spike with a resolution of 1 msec may be emitted from a neuron’s 

body, but then it must travel down the axon, interact with a synapse to open a conductive gate and, along 

with other spikes, generate a dendritic pulse that reaches the downstream neuron’s body and eventually 

results in an output spike.  Is it plausible that 1 msec temporal resolution can be maintained throughout 

this sequence of events that crosses a gamma cycle boundary? It seems more plausible that only 1 bit of 

temporal precision is sustainable for inter-neuron communication. This implies the full encoding window 

of 5-10 msec is used for communicating a single bit.  In a temporal system, this 1 bit of precision is 

equivalent to a binarized inter-neuron communication system. 

 

 

 


