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Human Activity Recognition (HAR) is a prominent application in mobile

computing and Internet of Things (IoT) that aims to detect human activities

based on multimodal sensor signals generated as a result of diverse body

movements. Human physical activities are typically composed of simple

actions (such as “arm up”, “arm down”, “arm curl”, etc.), referred to as semantic

features. Such abstract semantic features, in contrast to high-level activities

(“walking”, “sitting”, etc.) and low-level signals (raw sensor readings), can

be developed manually to assist activity recognition. Although e�ective, this

manual approach relies heavily on human domain expertise and is not scalable.

In this paper, we address this limitation by proposing a machine learning

method, SemNet, based on deep belief networks. SemNet automatically

constructs semantic features representative of the axial bodily movements.

Experimental results show that SemNet outperforms baseline approaches and

is capable of learning features that highly correlate with manually defined

semantic attributes. Furthermore, our experiments using a di�erent model,

namely deep convolutional LSTM, on household activities illustrate the broader

applicability of semantic attribute interpretation to diverse deep neural network

approaches. These empirical results not only demonstrate that such a deep

learning technique is semantically meaningful and superior to its handcrafted

counterpart, but also provides a better understanding of the deep learning

methods that are used for Human Activity Recognition.

KEYWORDS

human activity recognition, deep belief networks, semantic mid-level features,

ubiquitous computing, multimodal sensing, artificial intelligence, internet of things

1. Introduction

Human activity recognition (HAR) through smartphones has been an indispensable

component in mobile ubiquitous computing. As a foundation, HAR enables many

context-aware applications and services (Chennuru et al., 2012; Wu et al., 2013; Wang

et al., 2014). To recognize activities of a mobile user, various machine learning (ML)

algorithms have been applied and engineered for specific application contexts (Bao and

Intille, 2004; Huynh et al., 2008; Chen et al., 2021).
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FIGURE 1

High-level activities can be represented by a set of semantic

attributes.

Many existing ML methods use labeled training data for

every single activity class that the HAR system aims to detect.

However, this methodology omits some useful information. For

example, rich structural information of the “chest press” activity

as shown in Figure 1 can hardly be characterized by such a

single class label. At the same time, most existing approaches

have to enumerate all existing activity classes, and cannot

recognize a previously unseen activity if there were no training

samples for that activity (Cheng et al., 2013b). One popular

solution to these challenges is to introduce semantic features

that capture higher level concepts (Huynh et al., 2008; Cheng

et al., 2013b). One approach to introduce such semantic features

is by manually designing semantic attributes (Cheng et al.,

2013a,b). This approach has also proven effective in computer

vision (Farhadi et al., 2009; Liu et al., 2011; Mittelman et al.,

2013). Researchers have also applied it in HAR and achieved

satisfactory results (Cheng et al., 2013a,b).

Figure 1 illustrates the attribute concept in activity

recognition. The workout activity “chest press” may be

effectively represented by introducing a set of semantic

attributes: “arm forward,” “arm side,” “arm curl,” and so forth.

The attribute representation can be obtained through the

following steps: (1) an expert with domain knowledge defines

a set of attributes, and each instance in the training dataset has

to be labeled with the presence or absence of each attribute; (2)

a classifier is trained for each of the attributes using the training

data; (3) a feature selection scheme is applied on the attributes

to create appropriate feature combination (Farhadi et al., 2009).

However, obtaining these attributes is often time consuming and

expensive since it requires much effort from test subjects, human

annotators and domain experts. This demanding procedure also

suffers from a scalability issue when new activities and new

low-level features are present. Moreover, selecting attributes

manually can be subjective and arbitrary, and may lead to

non-discriminative features.

Some unsupervised learning algorithms attempt to construct

semantic features instead of attributes. Some approaches rely

on latent Dirichlet allocation (LDA) (Blei et al., 2003), which

uses a set of topics to describe activities. LDA has been

successfully applied in text analysis, information retrieval,

computer vision (Lampert et al., 2009), and human activity

recognition (Huynh et al., 2008). However, unlike words in

text, activity signals have less clear semantic interpretations.

Therefore, LDA has not been very successful in identifying

semantic feature representations.

Another line of work is represented by deep neural networks,

which learn a hierarchical set of features in an unsupervised

or supervised manner. For example, the idea underlying Deep

Belief Network (DBN) is to use restricted Boltzmann machine

(RBM) (Hinton, 2002) as a building block. This enables the

use of a greedy layer-wise learning procedure. RBM is a bi-

partite undirected graphical model that is capable of learning a

dictionary of patterns. These patterns are positively correlated

with the observed input data. In computer vision, DBNs have

achieved promising results (Mittelman et al., 2013). Further,

many deep learning approaches have been applied in activity

recognition task (Plötz et al., 2011; Zeng et al., 2014a, 2017, 2018;

Chen et al., 2021). In this paper, we expand the RBM into a

hierarchical representation, wherein relevant semantic concepts

are revealed at the higher levels. Additionally, we use Indian

buffet process (IBP) to train a sparse DBN, which helps to get

more relevant semantic features and improve the results.

In order to identify the semantic concepts that are captured

by the semantic features by a sparse DBN, we carry out

experiments and evaluate the performance. By computing

the correlation between learned features and each of the

labeled attributes in the training set, we can evaluate the

correspondences between the learned features and the labeled

attributes. We demonstrate that we can find semantic concepts

similar to attributes like “arm up” and “arm down,” even

though no information with regards to these attributes was

given during the training process. Improved accuracy further

demonstrates that HAR applications can benefit from deep

learning approaches.

We summarize our key contributions as follows:

• We propose an approach that uses a heterogeneous sparse

DBN to extract semantic feature representation without

using any domain knowledge.

• We also demonstrate that learned features carry

appropriate semantic meaning by calculating and

evaluating correlation with available manually defined

attributes.

• We demonstrate semantic correlation of attributes for two

different models on two datasets: (1) the proposed sparse
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DBN on Exercise Activity dataset (Cheng et al., 2013b), and

(2) a deep convolutional LSTM on Opportunity Human

Activity Recognition dataset (Chavarriaga et al., 2013).

The paper is organized as follows. We begin with a survey of

related work and discuss how it compares to our work. Next, we

present our approach built on the restricted Boltzmannmachine

and Deep Belief Networks (DBNs). Furthermore, we propose

a sparse DBN-based mechanism that enhances the results. We

thereafter present experimental results and analysis. Finally, we

conclude and discuss future research directions.

2. Related work

In the field of mobile, wearable, and pervasive computing,

extensive research has been conducted to recognize human

activities (Bao and Intille, 2004; Blanke and Schiele, 2010; Peng

et al., 2011; Plötz et al., 2011; Cheng et al., 2013a,b; Zeng

et al., 2014a,b, 2017, 2018; Yu et al., 2016; Pan et al., 2017).

One line of research in this field starts with Bao and Intille

(2004), who placed accelerometers on different body positions

to recognize daily activities such as “walking,” “sitting,” and

“watching TV.” Since then, researchers have been devoted to

improving recognition accuracy. Many of them investigated

underlying structural representations of activities. For example,

Peng et al. (2011) apply the hidden Markov model (HMM) to

model activities using one latent layer.

The idea of latent structure was extended for recognizing

previously unseen activities. Cheng et al. (2013b,a) leverage zero-

shot learning (Palatucci et al., 2009) in the NuActiv approach,

using predefined semantic attributes to predict new activities.

Essentially, the manually defined attributes can be regarded

as semantic features. The introduction of such features have

been proven effective in computer vision, for instance in object

recognition (Lampert et al., 2009; Russakovsky and Fei-Fei,

2010; Liu et al., 2011).

Manually defining attributes, however, is time-consuming

and expensive. To address these drawbacks, Mittelman et al.

(2013) propose the Beta-Bernoulli process restricted Boltzmann

machine (BBP-RBM) to learn semantic features for object

recognition. In HAR, there are similar approaches attempting

to construct semantic features using latent Dirichlet allocation

(LDA) (Huynh et al., 2008). Huynh et al. showed that LDA-

based approaches, however, are limited to features that have

high correlation with the activities to be recognized (Huynh

et al., 2008). Deep neural networks represent another line of

study to learn hierarchical features in an unsupervised manner.

Plötz et al. (2011) applied the RBM to extract features from

accelerometer data. Zeng et al. (2014a) took advantage of

convolutional neural network to preserve local dependency

and scale invariant features to achieve better recognition

performance. In contrast, we are, in this paper, able to leverage

a DBN to learn relevant semantic features pertaining to HAR

without requiring manually defined attributes.

To avoid overfitting in training, sparsity is introduced into

deep neural networks (Lee et al., 2007; Glorot et al., 2011;

Salakhutdinov et al., 2013; Srivastava et al., 2014). Advantages

of sparsity also include information disentangling and efficient

variable-size representation (Glorot et al., 2011). One popular

sparsity technique is dropout (Srivastava et al., 2014), which

randomly removes some nodes in each iteration during the

training procedure. Lee et al. (2007) set thresholds in the node

selection phase of RBM to enforce sparsity penalty. Mittelman

et al. (2013) use a Beta-Bernoulli process over the RBM to

remove some nodes. Bhattacharya et al. (2014) use a sparse-

coding framework to build a feature space codebook onto which

the transportation activities in their experiment were mapped.

In this work, we also introduce heterogeneous sparsity into our

DBN in order to achieve superior results.

Deep neural networks, implementing various types of

CNNs, LSTMs, etc. have achieved state-of-the-art results on

HAR recently (Nweke et al., 2018; Chen et al., 2021; Erdaş

and Güney, 2021). Current works typically focus on multi-

modal sensing, i.e., performing activity recognition using

multiple different sensors such as accelerometers, gyroscopes,

etc. EmbraceNet (Choi and Lee, 2019) uses separate docking

and embracement layers to effectively perform sensor fusion.

Many works successfully combine CNNs and RNNs to perform

complex activity recognition (Ordóñez and Roggen, 2016; Zhao

et al., 2018; Xu et al., 2019). The authors in Hassan et al.

(2018) perform smartphone-based activity recognition using

a DBN and SVM-based model. Apart from a plethora of

supervised learning approaches along these lines, a few works

also leverage unsupervised learning and deep generative models

for HAR. Some of them use different variants of autoencoders,

like stacked autoencoders (Chikhaoui and Gouineau, 2017),

stacked denoising autoencoders (Gu et al., 2018) and CNN

autoencoders (Zeng et al., 2017). A recent work has proposed

using deep variational autoencoders (VAEs) (Bai et al., 2019) to

learn highly effective representations of activity time sequences

using unlabeled data.

3. DBN with heterogeneous sparsity
for learning semantic features

Our proposed deep learning methodology for human

activity recognition is based on deep belief networks (DBNs)

and we use the outputs of the last hidden layer to assess

correlations with manually defined mid-level features. The

main reason to use DBNs here is to introduce prior to the

HAR methodology that eventually enables the model to better

capture the mid-level semantic features. In this section, we

describe the key components of our proposed DBN model,

including Restricted BoltzmannMachine (RBM), different types
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of sparsity such as dropout and Indian Buffet Process (IBP) and

the training procedure.

3.1. Standard restricted boltzmann
machine

An RBM is a two-layer undirected probabilistic graph, in

which the visible input layer contains a set of binary or real

valued units {v1, . . . , vNv } and the hidden layer is composed

of a set of binary units {h1, . . . , hNh
}. Here, Nv and Nh are

the numbers of visible units and hidden units, respectively.

Connections are only allowed between the visible layer and the

hidden layer. Let v = [v1, . . . , vNv ]
T and h = [h1, ..., hNh

]T ,

where T denotes the transpose. The energy function of RBM is

defined as

E(v, h) = −hTWv− bTv− cTh (1)

where W = [wji]Nh×Nv is the weight matrix, b = [bi]Nv×1 is

the bias of visible units and c = [cj]Nh × 1 is the bias of hidden

units. Then the joint probability distribution of v and h with σ

as the activation function is

p(hk|v) = σ (wk,ivi + bk) (2)

p(vi|h) = σ (wk,ihk,+ci) (3)

The log likelihood function corresponding to the visible

units is given by

P(v) =
1

Z

∑

h

(

−E(v, h)
)

(4)

where Z is the normalization factor.

We denote the parameters of RBM by θ = {W, b, c}.

The derivative of the log-likelihood of visible units [P(v)] with

respect to model parameter θ can be written as

∂P(v)

∂θ
= Edata

(

−
∂E(v, h)

∂θ

)

− Emodel

(

−
∂E(v, h)

∂θ

)

(5)

where Edata(·) and Emodel(·) denote the expectations of the

data distribution and the model distribution, respectively.

Computing the function ∂P(v)
∂θ

in (5) exactly is intractable

because the closed form of the model distribution remains

unknown. However, the derivative can be approximately

computed by Contrastive Divergence (CD) (Hinton, 2002).With

CD, the locally optimal solutions of model parameters θ can be

attained by gradient descents.

3.2. RBM with random dropout sparsity

Dropout training controls overfitting by randomly

omitting subsets of features at each iteration of a training

procedure (Hinton et al., 2012). Formally, we can use

F = f1, . . . , fK , to represent an indicator vector, F ∈ 0, 1. Each

fk is generated according to a uniform distribution, fk ∼ U(γ ).

In each iteration, F is enforced on each input layer to remove

nodes using fk.

3.3. Indian bu�et process

The Indian buffet process (IBP) can be applied to generate

a binary indicator vector with similar 0/1 patterns. It is natural

to combine with the RBM probability model. We use zIBP =

[z1, . . . , zK ] to denote the indicator vector. We assume the

two-parameter IBP (Ghahramani et al., 2007), and use Z ∼

IBP(α,β)to indicate the vector ZIBP ∈ {0, 1}K . Specifically, the

indicator vector Z is generated according to a Beta-Bernoulli

process as follows:

π ∼ Beta(α/K,β(K − 1)/K),

zk ∼ Bernoulli(πk)
(6)

Where α,β are positive parameters, and we use the notation

π = [π1, . . . πK ]
T for the parameters of the Bernoulli

distribution. It is implied from (6) that if πk is close to 1 then zk
is more likely to be 1, and vice versa. The form of the parameters

of Beta distribution implies that for a sufficiently large K and a

reasonable choice of α and β , mostπk will be close to zero, which

implies a sparsity constraint on zk.

3.4. RBM with IBP sparsity

In this section, we enhance the generalization ability of RBM

from a different perspective - by enforcing constraints on the

nodes of hidden layer. Dropout increases sparsity by removing

hidden nodes uniformly in each training epoch. However, by

leveraging IBP, we demonstrate we are able to obtain better

sparse features due to IBP’s grouping characteristic (Banos et al.,

2014).

The binary selection vector z = [z1, . . . , zK ]
T is used

to choose which of the K hidden units should be allowed

to remain activated. Our approach is to define an undirected

graphical model in the form of a factor graphical model. Using

the binary selection vector mentioned above, we have a new

energy function

E(v, h, z) = −
(

z ⊗ h
)T

Wv− bT
(

z ⊗ h
)

− cTv, (7)
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where ⊗ denotes element-wise vector multiplication. With the

new energy function, we can define

g1(v, h, z) = e−E(v,h,z) (8)

Since the binary selection vector is created via Beta-

Bernoulli Process, its distribution function can be described as

g2

(

{

zj
}M

j=1
,π

)

=

K
∏

k=1

π

∑M
j=1 z

j

k

k
(1− πk)

∑M
j=1(1−z

j

k
)

× π
α/K−1
k

(1− πk)
β(K−1)/K−1

(9)

where j denotes the index of the training sample, and M

represents the number of training samples.

Using the training factor graph, the PDF for IBP-RBM is

p

(

{

vj, hj, zj
}M

j=1
,π

)

∝

M
∏

j=1

g1

(

vj, hj, zj
)

g2

(

{

zj
}M

j=1
,π

)

(10)

3.5. IBP-RBM inference

Inference in IBP-RBM can be estimated by Gibbs sampling.

The joint posterior PDF of h and z can be sampled as below

p(hk = a, zk = b|vk,πk) ∝



























πke
∑

i wk,ivi a = 1, b = 1

πk a = 0, b = 1

1− πk a = 0, b = 0

1− πk a = 1, b = 0

(11)

Then the posterior PDF of π takes the form

πk ∼

Beta



α/K +

M
∑

j=1

zk,β(K − 1)/K +

M
∑

j=1

(1− zk)





(12)

Sampling from the posterior PDF of the visible layer is

performed in a similar manner as described in standard RBM.

3.6. DBN with heterogeneous sparsity

Once a layer of the network is trained, the parameters

wij, bj, ci’s are frozen and the hidden unit values are inferred

from the given data. These inferred values act as the “data”

that will be used to train the next higher layer in the network.

We use dropout on the first hidden layer and use IBP on

the second hidden layer, which injects heterogeneous sparsity

to the DBN (HSparseDBN). Figure 2 shows the structure of

the HSparseDBN model. The details of our procedure are

summarized in Algorithm 1.

FIGURE 2

The structure of Heterogeneous Sparse DBN.

Input: Labeled dataset Dlabeled = {xi, yi}, dropout

rate γ, initial sample of π, learning

rate λ

Output: Two layers deep belief network

• Training procedure at first layer

1. Sample h using Equation (2)

2. Remove a part of h according to f, and

sample x based on h using Equation (3)

• Training procedure at second layer

1. Sample π using Equation (12)

2. Sample h0, z0|π , v0 using Equation (11)

3. Sample v1|π , h0, z0 using Equations (10) and

(12)

4. Sample h1, z1|π , v1 using Equation (11)

• Back propagation on DBN

1. Update dropout and IBP layer parameters

θdropout and θibp using Equation (5)

Algorithm 1. Heterogeneous sparse DBN (HSparseDBN) training

procedure.

4. Experimental results and analysis

In this section, we present our experiment setup and evaluate

performance of our approach.

4.1. Experimental procedure

We mainly use the Exercise Activity dataset for our

evaluation. The dataset contains human activities in different
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contexts and have been recorded using tri-axial accelerometers.

The sensor data is segmented using a sliding window with a size

of 64 continuous samples and 50% overlap. We experiment with

all our deep learning algorithms on a computer equipped with a

Tesla K20c GPU and 64G memory. Other computations run on

the same computer but on an Intel Xeon E5 CPU. Throughout

this section, we use two hidden layer DBN, with 2,048 and 1,024

nodes in the first and second hidden layer, respectively. The

dropout rate in the first hidden layer is 0.3 and the parameter

values for IBP in the second layer are α = 1,β = 5. The other

parameters W, b, c in the network were initialized by drawing

from a zero mean Gaussian with standard deviation 0.005. We

also use weight decay and momentum in our networks. The

regularization parameters are 0.998 and 0.95. We use rectified

linear unit (ReLU) as the activation function.

Additionally, we also train a Deep Convolutional LSTM

model on Opportunity Human Activity Recognition

dataset to increase diversity in the model and dataset. In

contrast to Exercise Activity dataset that involves exercises,

Opportunity dataset involves regular day-to-day activities such

as opening/closing a door. This experiment is described further

in the last subsection on exploring the generality of semantic

interpretation beyond DBNs.

4.1.1. Exercise activity dataset

In the Exercise Activity dataset (Cheng et al., 2013b),

20 test subjects were asked to perform a set of 10 exercise

activities (Chang et al., 2007). Each subject was equipped

with three sensor-enabled devices: a Nexus S 4G phone in an

armband, a MotoACTV wristwatch, and a second MotoACTV

clipped to the hip. The dataset contains accelerometer and

gyroscope data collected at 30 Hz sampling rate. For feature

extraction, the sliding window size is empirically set to 1 s

with 50% overlap based on a leave-one-out cross-validation

test. The dataset contains around 8,000 instances. Figure 3 plots

the correlation values between human activities and semantic

attributes, as derived from the Exercise Activity dataset. It

depicts how exercise activities are strongly associated with

certain arm/leg movements, thus demonstrating the potential

for semantic feature extraction.

4.2. Recognition accuracy

In Table 1, we compare the accuracy values obtained for

Exercise Activity dataset when using features learned from the

training set using dropout DBN, Heterogeneous Sparse DBN

(HSparseDBN), statistical features, and combinations of DBN

with statistical features. The statistical features are obtained by

calculating mean across the input using a sliding window. The

classifier used here is a multi-class linearSVM (Fan et al., 2008).

When performing leave-one-out validation, only one user is

used as test data and the rest form training data.

FIGURE 3

Correlation between human activities (in rows) and attributes (in

columns) for the Exercise Activity dataset.

TABLE 1 Accuracy comparison between several methods, all using

linearSVM classifier for the Exercise Activity dataset.

Features Accuracy (%)

Statistical 77.30

DropoutDBN 81.56

HSparseDBN 82.30

Statistical+DropoutDBN 84.38

Statistical+HSparseDBN 85.72

Bold value represents the highest valued result in the table.

From Table 1, we see that accuracy is higher when using

DBN features compared to using just statistical features.

This suggests that DBN is able to capture more useful and

relevant semantic features. Furthermore, the accuracy of DBN

+ statistical features is higher than when using only DBN

features or statistical features. This implies that DBN alone does

not capture all of the features and that the statistical features

are complementary to the DBN features. We also note that

using HSparseDBN improves accuracy over DropoutDBN, thus

demonstrating superior generalization ability of sparse features

due to IBP’s grouping characteristic. We conclude that the

HSparseDBN + statistical features method benefits from both

heterogenous sparsity of DBN and statistical features and hence

outperforms all other methods.

4.3. Learned features vs. semantic
attributes

In this section, we evaluate the degree to which the features

learned using the DBN can capture semantic concepts. For each

feature and label attribute pair, we compute the correlation

and find the most correlated DBN-based feature for each
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FIGURE 4

Correlation between DropoutDBN features and attributes for

User 8.

semantic attribute.

rattri,dbn =

∑M
i=1(xattri − x̄attri)(xdbn − x̄dbn)

√

∑M
i=1(xattri − x̄attri)2

∑M
i=1(xdbn − x̄dbn)

2

(13)

Figure 4 show the correlation score of User 8. The features

are represented by node numbers on the left. Most of dropout

DBN features have a score greater than 0.5. The correlation

between HSparseDBN features and attributes is shown in

Figure 5. The result shows that all the corresponding features

have high correlation scores. This supports our hypothesis

that the learned features from DBN can capture important

relevant semantic concepts, and demonstrates the benefit of

using heterogeneous sparsity.

4.4. Domain adaption

An important aspect of evaluating the features is the degree

to which they generalize well across different users, even if their

distributions are different from each other. In this case the

distribution of training set and test set is no longer i.i.d. In this

subsection, we look into the accuracy of test user in the leave-

one-out validation. In the test procedure, a test set contains

certain instances from only one user, and the rest of users

combine to form the training set. Since we already observed

that Statistical+HSparseDBN performs best on average on these

datasets, we compare the accuracy when using statistical features

and the combination of statistical and HSparseDBN features.

The results over 19 individual users are shown in Figure 6. From

the results, we can see that statistical+HSparseDBN consistently

outperforms statistical features alone, except for user 1 (31.07

vs. 30.72%).

FIGURE 5

Correlation between HsparseDBN features and attributes for

user 8.

4.5. Exploring the generality of semantic
interpretation

In addition to the previous experiments discussed above,

we use another dataset to explore the applicability of semantic

interpretation more generally in other types of deep neural

network models. In order to do so, we utilize Opportunity

Challenge dataset and a deep convolutional LSTM model, both

of which are described below.

4.5.1. Opportunity challenge dataset

This dataset contains regular day-to-day human activities

performed within a home environment with readings performed

by motion sensors located on the body, different objects in

the environment as well as ambient sensors. Recordings are

taken from four different subjects over multiple runs with

scripted as well as unscripted sequence of activities such

as opening/closing the door, opening/closing the refrigerator,

preparing coffee, toggling the light switch, etc. These are

provided as 242 sensor attributes and classified as 17 different

“mid-level gesture” activities in the dataset. Note that this

definition is different from the “mid-level attributes” as used

in this paper. The dataset also provides annotations for 13

“low-level” activities (for each arm) like unlock, lock, reach,

sip, etc. which together combined with the objects provide

the mid-level activities. For the purpose of our experiment,

we term these 13 low-level activities as the semantic mid-

level features to be learnt by a model trying to classify the

dataset’s 17 mid-level gesture activities. Also, it is to be noted

that we only use a subset of the attributes as done in the

Opportunity Challenge, which selects 113 out of the total

242 attributes.
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FIGURE 6

Accuracy of statistical features and statistical + HSparseDBN features, for users in Exercise Activity dataset.

FIGURE 7

Correlation between DeepConvLSTM features and 13 semantic

attributes from Opportunity dataset. Y axis plots the hidden

dimensions correlated with the semantic attributes on X axis.

4.5.2. Deep convolutional LSTM

We use a similar deep convolutional LSTM model as in

Ordóñez and Roggen (2016) with four convolutional layers

followed by two LSTM layers and a final fully connected layer,

implemented in PyTorch. The last hidden layer, i.e., the second

LSTM layer, consists of 128 nodes and implements dropout

sparsity with 0.5 probability. The data to the input layer is

provided using a sliding window of 24 with an overlap of 12,

with 113 input channels. The convolutional layers all have 64

output channels and use 5x5 kernels. The final fully connected

layer is used to classify 18 classes of dataset’s mid-level activities.

The additional one class is used to classify unidentified or

ambiguous activities.

4.5.3. Semantic correlation

We train the above model for 10 epochs with SGD

optimizer and cross-entropy loss, and achieve matching results

as original implementation, with 84.35% validation accuracy.

Once trained, we take the 128-length feature vector from

the second LSTM hidden layer (the last hidden layer in the

network), and calculate correlation across the 13 semantic

mid-level features. The hidden dimensions with the highest

correlations are plotted in Figure 7. It can be seen from the

figure that certain hidden layer nodes have high correlation

with the corresponding semantic features (can be seen along

the diagonal in Figure 7), thus implying the capability of the

network to capture semantic interpretation. As this experiment

is performed on a deep convolutional LSTM and Opportunity

dataset with different type of activities compared to our

earlier experiment using the proposed DBN and Exercise

Activity dataset, it demonstrates the generality of the semantic

capabilities of deep neural networks.

5. Conclusion and future work

In this paper, we demonstrate that deep neural networks

can capture semantic concepts. We introduce a new method,

called SemNet, for learning semantic feature representation

using dropout and Indian buffet process DBN, which can

avoid overfitting and group similar features. We use Exercise

Activity dataset for our experiments and are able to achieve

promising results. We also study the semantic concepts by

calculating the correlation between manually defined attributes

and learned features, using which we show that many of

the extracted features have semantic meanings. Additionally,

we also demonstrate semantic correlation on a completely

different type of deep model, convolutional LSTM, on a different

dataset consisting of regular daily household activities. As future

work, we will test the proposed method on more datasets and

examine the inference process of semantic topics.We also intend

on exploring the efficacy of Recurrent Neural Networks and
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their sequence modeling capability for learning features with

semantic meanings. We further intend to leverage variational

autoencoders (VAEs) and leverage the learned encoder output

to extract semantic correlation with attributes.
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