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ABSTRACT

Unsupervised time series clustering is a challenging problem
with diverse industrial applications such as anomaly detec-
tion, bio-wearables, etc. These applications typically involve
small, low-power devices on the edge that collect and pro-
cess real-time sensory signals. State-of-the-art time-series
clustering methods perform some form of loss minimization
that is extremely computationally intensive from the perspec-
tive of edge devices. In this work, we propose a neuromor-
phic approach to unsupervised time series clustering based
on Temporal Neural Networks that is capable of ultra low-
power, continuous online learning. We demonstrate its clus-
tering performance on a subset of UCR Time Series Archive
datasets. Our results show that the proposed approach ei-
ther outperforms or performs similarly to most of the exist-
ing algorithms while being far more amenable for efficient
hardware implementation. Our hardware assessment analysis
shows that in 7 nm CMOS the proposed architecture, on av-
erage, consumes only about 0.005 mm2 die area and 22 µW
power and can process each signal with about 5 ns latency.

Index Terms— Temporal Neural Networks, Unsuper-
vised Learning, Time-Series Clustering, Neuromorphic Chip

1. INTRODUCTION

Supervised deep neural networks have revolutionized the field
of Machine Learning and achieve state-of-the-art results on
many applications such as Computer Vision, Natural Lan-
guage Processing, etc. However, they require 1) extensive
amounts of labeled data, 2) large power-hungry compute re-
sources, and 3) separate training and testing phases leading to
poor generalization across unseen data patterns. These con-
straints become particularly pertinent for industrial edge ap-
plications involving time-series signals such as anomaly de-
tection, bio-wearables, smart city sensors, etc. Unsupervised
time-series clustering, which groups signals according to sim-
ilar features, overcomes the first limitation. The second and
third limitations raise the need for online processing that can
dynamically capture the changes in macro patterns over time,
within a tiny power budget.

Several techniques for time-series clustering have been
studied in the literature. The work in [1] proposes a deep

learning based approach to learn feature representations for
enhanced clustering performance. They propose an encoder-
decoder architecture and train the model using a joint clas-
sification, reconstruction and K-means loss function. While
their approach achieves state-of-the-art performance, it re-
quires the deep network to be trained a-priori using synthetic
data. Furthermore, the approach, involving multi-layer RNNs
and backpropagation, is not suitable for computationally and
memory constrained edge devices. A method for learning
shapelets, or discriminative segments of a time series, in
an unsupervised manner has been proposed in [2]. While
typical shapelet based methods exhaustively search a set of
candidates to find the optimal shapelets for clustering, the
USSL algorithm described in [2] builds on [3] to formulate
the shapelet learning problem as an optimization problem
that can be solved using coordinate descent. However, the
authors use pseudo-labels to iteratively improve the quality
of the discovered shapelets. While there are many other such
works on unsupervised clustering in literature, low-power
online learning algorithms have not been widely explored.

In this paper we present a low-power, online, unsuper-
vised processor for time-series clustering based on the re-
cently proposed Temporal Neural Networks (TNNs). TNNs
are a specific class of Spiking Neural Networks (SNNs) that
encode and process information temporally via relative spike
timing relationships and are defined by a rigorous space-
time algebra [4, 5]. The space-time computing framework of
TNNs resemble that of the mammalian neocortex and can be
directly implemented using off-the-shelf CMOS technology
[6]. To the best of our knowledge, this is the first work to
propose a TNN-based approach for time-series clustering.

2. BACKGROUND

2.1. SNNs and TNNs

Biologically inspired spiking neural networks have become
increasingly popular due to their ability to perform pattern
recognition tasks with ultra-low power consumption. These
networks are typically composed of an encoding layer, one or
more fully connected layers, and most recently, convolution
layers [7, 8, 9, 10, 11, 12]. Most spiking neural networks in
the literature either encode the input stimulus as the spiking
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Fig. 1. Neural Network Taxonomy [6]

rate and/or use backpropagation for learning (Figure 1), both
of which are not biologically plausible. Temporal neural net-
works (TNNs) employ intensity-to-latency temporal encoding
and Spike Timing Dependent Plasticity (STDP) learning, both
of which are biologically plausible. The architecture of TNNs
is composed of a hierarchy of building blocks, namely, multi-
synapse neurons, multi-neuron columns and multi-column
layers and can be directly implemented in hardware using
standard CMOS technology [6]. Synapses in TNN networks
store weights and these weights are trained using STDP.

2.2. Temporal Encoding

Two neuron coding schemes have been primarily used in
SNNs: rate coding and temporal coding. As implied by their
name, rate-based coding schemes represent information using
the frequency of spikes within a time interval and hence emit
multiple spikes for a single input. Temporal coding methods,
however, represent information in the relative time at which
a spike occurs, rather than the spike frequency, leading to a
single spike per input. Temporal codes are thus capable of
accurately representing data with sparse spiking activity, and
consume far less power than rate codes [5]. Furthermore, it
has been experimentally shown in [13] that in some appli-
cations, encoding data with a population of neurons is more
accurate than using a single neuron alone, i.e., it offers greater
resolution for data representation. Hence, in this work, we
apply both temporal and population coding mechanisms for
representing time series signals as spike trains.

3. PROPOSED APPROACH

A block diagram of the proposed unsupervised time series
clustering architecture is shown in Figure 2. The main com-
ponents of our architecture are described in detail below.

3.1. Signal Encoding Layer

The encoding layer transforms the input time-series signal
into a series of spike trains. Suppose the training dataset
D ∈ RN×L containsN uni-variate signals, where each signal
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Fig. 2. Block diagram of the proposed TNN architecture

is of length L. We first perform dimensionality reduction on
the incoming signals using sparse random projections. The
Johnson-Lindenstrauss lemma [14] asserts that a set of points
in n-dimensional Euclidean space can be randomly projected
onto a p-dimensional linear subspace where p < n such that
the pairwise distances between points are roughly preserved.
Achlioptis [15] showed that the transformation could be com-
puted using a sparse matrix P whose ij-element can take one
of the three values

√
3, 0, −

√
3 with respective probabilities

1
6 , 2

3 and 1
6 . Thus we generate the reduced dataset D̃ = DP

where the projection matrix P has dimensions L × ` (where
` << L). The sparsity of P enables this lower dimensional-
ity approach to be implemented on resource-constrained de-
vices. It also significantly reduces the hardware implementa-
tion complexity of the TNN processing layer.

The transformed data D̃ is then converted to spike trains
using Gaussian receptive fields resembling the approach in
[16]. Specifically, let x = (x0, x1, . . . , x`−1) be a data sam-
ple (row) from D̃. A point xi is encoded by a population
of E encoding neurons, each of which describes a Gaussian
function. The parameters for the Gaussian functions for xi
are computed over all data samples (column i of D̃). The
width σi and center µij for the ith time step and jth neuron
(j = 0, 1, . . . , E − 1) are defined as:

σi =
γ (xi, max − xi, min)

E − 2

µij = xi, min +

(
2j − 3

2

)
σi

Here, xi, min and xi, max represent the minimum and maxi-
mum value in the ith column of D̃ while γ is a scaling factor.



The time t(e)j at which an encoding neuron j emits a spike for
input xi is:

fj = exp

[
−1

2

(
xi − µij

σi

)2
]

t
(e)
j = round [Tmax · (1− fj)]

Thus the encoding layer emits a total of E · ` discrete spike
trains for ` inputs. Here, Tmax is an exclusive upper bound on
the spike times generated by the encoding neurons. If t(e)j =
Tmax, then no spike is emitted by the neuron. Note that our
architecture model is completely integer-based and therefore
highly amenable for efficient hardware implementation.

3.2. TNN Processing Layer

3.2.1. Excitatory Neurons

The fully connected TNN processing layer is composed of a
single column of ramp-no-leak, integrate and fire neurons [6].
The number of neurons in the layer is equal to the number of
clusters, while the number of synapses per neuron is equal to
E · `. The body (or membrane) potential of the kth neuron in
the TNN processing layer at time t is modeled as:

vk(t) =
∑
j

ρ
(
t− t(e)j , wkj

)
Here, wkj is the synaptic weight from neuron j in the encod-
ing layer to neuron k in the processing layer, and t(e)j rep-
resents the input spike time from encoding neuron j. The
ramp-no-leak response function, ρ, is defined as:

ρ(t, w) =


0 if t < 0

t if 0 ≤ t < w

w if t ≥ w

A neuron in the processing layer emits a spike immediately
after its body potential exceeds some threshold θ. A neuron
may only emit a single spike in a forward pass for any given
data sample. After each forward pass (which includes lateral
inhibition described below), the body potentials for all neu-
rons in the layer are reset. The output spike time tk of the kth

neuron in the processing layer is formally computed as:

tk =


tout if ∃ tout s.t. vk(tout) ≥ θ and

@ t < tout s.t. vk(t) ≥ θ
Tmax otherwise

3.2.2. Lateral Inhibition

Lateral inhibition is a biologically inspired technique in which
an excited (i.e., spiking) neuron reduces the relative spiking
activity of its neighboring neurons. In this work, we apply

1-Winner Take All (1-WTA) lateral inhibition to the output
spike times of the processing layer. The earliest spike is al-
lowed to propagate whereas all other spikes are suppressed.
The output spiketime t(o)k generated after 1-WTA mechanism
can be formally computed as follows:

t
(o)
k =

{
tk if tk = tmin, @ m < k s.t. tm = tmin

Tmax otherwise

Here, tmin is the earliest time at which any neuron in the pro-
cessing layer fires. If multiple neurons spike at time tmin, tie
breaking selects the lowest index neuron. In case of no spike,
the neuron with the maximum body potential is chosen.

3.3. STDP Training

A modified form of spike timing dependent plasticity (STDP)
is used to train the synaptic weights of the TNN processing
layer. In this work, we consider a stochastic, unsupervised
learning rule with integer updates that is amenable to direct
hardware implementation. The synaptic weight wkj linking
neuron j in the encoding layer to neuron k in the processing
layer is updated according to the following rules:

Spike Time Conditions ∆wkj

t
(e)
j 6= Tmax, t

(o)
k = Tmax +Xs

t
(e)
j 6= Tmax, t

(o)
k 6= Tmax,

t
(e)
j ≤ t

(o)
k

+Xc ·max(SP (wkj), Xmin)

t
(e)
j 6= Tmax, t

(o)
k 6= Tmax,

t
(e)
j > t

(o)
k

−Xc ·max(SN (wkj), Xmin)

t
(e)
j = Tmax, t

(o)
k 6= Tmax −Xb ·max(SN (wkj), Xmin)

t
(e)
j = Tmax, t

(o)
k = Tmax 0

Table 1. STDP Update Rules [6]

Here, Xs, Xc, Xb, Xmin are Bernoulli random variables with
respective probabilities πs, πc, πb, πmin of being one. Intu-
itively if the output spike time of the encoding neuron is less
than or equal to that of the processing neuron, the correspond-
ing synaptic weight is increased due to positive correlation. If
the encoding spiketime is greater, the synaptic weight is re-
duced since the spike from the encoding neuron could not
have led to a spike in the output neuron. After each STDP
update, the stochastic weights are clamped within the inter-
val [0, wmax]. We restrict πs < πc < πb such that synaptic
weights are conservatively increased. SP (·) and SN (·) are
stabilizing random variables used to achieve a bimodal con-
vergence of weights, and are characterized as:

P [SP (wkj) = 1] =

(
wkj

wmax

)
·
(
2− wkj

wmax

)
P [SN (wkj = 1)] =

(
1− wkj

wmax

)
·
(
1 +

wkj

wmax

)



4. EXPERIMENTAL EVALUATION

4.1. Methodology

We evaluate our approach on 36 time-series datasets from the
UCR time series archive [17], as done in [1], [2]. The datasets
span a broad range of application domains including elec-
trocardiogram (ECG) signals, human activity signals, image
data converted to time series, food spectrographs and sensor
recordings. The number of encoding neurons E per time se-
ries feature is equal to 8. We choose ` = bL/8c, where L is
the signal length. Thus, the total number of inputs to the TNN
is E · ` ≤ L. The number of processing neurons is equal to
the number of clusters. Tmax and wmax are set to 16 and 7
respectively. We use a 3-bit integer resolution for weights.

The TNN is trained over multiple epochs for each dataset
until approximate weight convergence is achieved. The clus-
ter assignment is taken to be the index of the spiking neuron
after 1-WTA. The winning neuron’s spike time suggests the
“confidence” in the cluster prediction. Rand Index (RI) is
used as in [1] to measure clustering quality and is defined as:

RI =
α+ β

N(N − 1)/2

α (β) is the number of data sample pairs with same (different)
label(s) that are assigned to same (different) cluster(s).
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Fig. 3. Comparison of TNN vs. state-of-the-art methods us-
ing Rand Index normalized to K-means

4.2. Clustering Performance Results

The performance of TNN is compared to state-of-the-art al-
gorithms reported in [1] [2]. Figure 3 depicts the rand index
scores for all 15 algorithms (including TNN) averaged across
the 36 datasets and normalized with respect to K-means.
As shown in the figure, the proposed TNN approach out-
performs 12 of the 14 algorithms even after the potential
loss of information through random projections. The deep
learning based approach DTCR [1] and shapelet based ap-
proach USSL [2] still outperform the TNN. However, DTCR
involves high-dimensional floating point tensor processing

and backpropagation. Meanwhile, USSL performs iterative
coordinate descent in order to learn and refine shapelets ac-
cording to pseudo labels. Both DTCR and USSL are far too
computationally demanding for embedded edge devices.

USSL is also not ideal for continuous streaming data as
shapelets are learned over the entire training dataset. Changes
in macro patterns of the signal would require new shapelets to
be explicitly learned. In comparison, our approach uses only
3-bit integer weights, is extremely hardware efficient (next
subsection) and capable of continuously learning and adapt-
ing to macro level changes in the signal segments.

TNN Synapse Area Comp. Power
Design Count [mm2] Time [ns] [mW]
Largest 6750 0.033 6.50 0.155
Smallest 130 0.001 3.59 0.002
Average 970 0.005 5.07 0.022

Table 2. Hardware Complexity for proposed TNN approach

4.3. Hardware Complexity Analysis

We assess die area, power consumption and processing de-
lay of the TNN processing layer, since the synapses in the
TNN layer constitute majority of the hardware complexity.
Table 2 provides the hardware complexity estimates for three
TNN designs (average, largest and smallest) based on the
characteristic equations and technology scaling from [6]. Our
area and power metrics scale linearly with the synapse count
while the latency scales logarithmically. Thus, the dimen-
sionality reduction via random projections reduces the area
and power by 77.5% and the latency by up to 30%. The
average synapse count for the proposed TNN architectures
across the 36 datasets is 970, which translates to about 5,000
µm2 die area, 22 µW power and 5 ns processing delay in 7
nm CMOS. The largest TNN network (WordSynonyms) with
6,750 synapses incurs 33,000 µm2 and 155 µW. On the other
hand, the smallest TNN network (SonyAIRobotSurface2) with
130 synapses consumes less than 1,000 µm2 and 2 µW.

5. CONCLUSION

We propose a TNN-based approach for online, unsupervised
clustering of real-time sensory signals that is ideal for always-
on, edge-native devices. The proposed architecture is capable
of iterative continuous learning and can easily be scaled for
multivariate signals. Our method outperforms K-means, and
is competitive with state-of-the-art algorithms when tested
across a wide variety of time-series datasets. Furthermore,
sizable TNNs can be directly implemented in 7 nm CMOS
with less than 1 mm2 die area and 1 mW power. To the best of
our knowledge, this is the first work that applies TNNs to the
problem of univariate time-series clustering. This can serve as
a foundation for future neuromorphic works in industrial edge
applications such as anomaly detection and keyword spotting.
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