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Abstract—Temporal Neural Networks (TNNs), a special class of
spiking neural networks, draw inspiration from the neocortex in
utilizing spike-timings for information processing. Recent works
proposed a microarchitecture framework and custom macro suite
for designing highly energy-efficient application-specific TNNs.
This paper introduces TNNGen, a pioneering effort towards the
automated design of TNNs from PyTorch software models to post-
layout netlists. TNNGen comprises a novel PyTorch functional
simulator for TNN modeling and application exploration and a
Python-based hardware generator for PyTorch-to-RTL and RTL-
to-Layout conversions. Seven representative TNN designs for
time-series signal clustering across diverse sensory modalities are
simulated, and their post-layout hardware complexity and design
process runtimes are assessed to demonstrate the effectiveness
of TNNGen. We also show TNNGen’s ability to forecast silicon
metrics accurately without running the hardware process flow.

Index Terms—Temporal neural networks, Neuromorphic sen-
sory processing units, Time-series clustering, Design automation.

I. INTRODUCTION AND BACKGROUND

Deep neural networks (DNNs) [1] have emerged as the
de facto technology for artificial intelligence (AI), even sur-
passing human-like sensory processing capabilities. However,
this impressive progress comes with an exponential surge in
compute demands and energy consumption, raising concerns
about long term sustainability of this trend [2]–[4]. Temporal
Neural Networks (TNNs), a special class of spiking neural
networks (SNNs) employing spike time-based processing with
close adherence to biological plausibility [5]–[7], offer a
promising alternative path for AI compute, with potential for
orders of magnitude improvements on energy efficiency.

Recent research [8] demonstrates that single-layered TNNs
excel in unsupervised time-series clustering [9]–[11] and
are amenable for resource-constrained edge devices. Further
works in advancing TNN research include a microarchitecture
framework for TNN implementation [12], and augmenting
the ASAP7 [13] 7nm CMOS process design kit (PDK) with
TNN-tailored custom macros, called TNN7 [14], for improved
energy-efficiency. Recently, the idea of creating an end-to-
end framework that can automate the design of specialized
TNN chiplets for online sensory processing applications was
suggested in [15], [16] as forward looking research proposals.

This work, TNNGen, serves as the first attempt at realizing
such a framework for the automated design of application-
specific TNNs, or Neuromorphic Sensory Processing Units
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(NSPUs), for online clustering of time-series sensory signals.
As shown in Fig. 1, it leverages PyTorch [17], PyVerilog
[18], Python, Cadence toolchain, and open-source FreePDK45
[19], ASAP7, and TNN7 libraries [14]. Starting from high-
level modeling of TNNs in PyTorch, it enables generation of
post-layout netlists of the models along with hardware metrics
in a single automated flow. It facilitates the development of
optimized energy-efficient designs without expert involvement,
integrating previously segregated software-only and hardware-
only TNN developments. Further, we enable users without
EDA access to obtain key hardware results without running
the actual process flow, via forecasting.

Other similar design frameworks have been proposed for
DNNs [20], [21]. ANNA [20] performs application-specific
neural architecture search (NAS) followed by translation to
High-Level Synthesis (HLS) kernels utilizing pre-defined ar-
chitectural templates (e.g., convolution units). SODA [21]
utilizes multi-level intermediate representation (MLIR) con-
structs for mapping algorithmic Python models to low-level
LLVM intermediate representation, which is then converted
to Verilog RTL using HLS. However, both frameworks only
support automation until the logic synthesis stage and are
targeted towards DNN accelerators. In contrast, our proposed
TNNGen generates specialized highly efficient post-layout
netlists of neuromorphic TNN implementations starting with
TNN functional models in PyTorch. Our key contributions are:

• TNNGen - a pioneering attempt at a design framework
for automated design of custom TNN-based NSPUs.

• A novel TNNGen functional simulator based on PyTorch
for robust modeling and rapid application exploration.

• A novel TNNGen hardware generator based on PyVerilog
that translates TNN PyTorch models to layout in con-
junction with Cadence EDA tools and a library of finely-
tailored TCL scripts for optimizing the TNN designs.

• Time-series clustering performance and post-layout hard-
ware metrics for seven representative TNN designs gen-
erated using TNNGen across different technology nodes,
extending beyond previous post-synthesis studies.

• Accurate forecasting of post-layout die area and leakage
power for a quick evaluation of hardware complexity in
lieu of the time-consuming EDA runs. It also allows users
without expertise in hardware design to focus on software
modeling while gaining insights into the silicon cost.

The next section details the TNNGen framework and its
key components. Section III describes our experimental setup
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Fig. 1. TNNGen framework for designing TNN-based neuromorphic sensory
processing units. It comprises a PyTorch functional simulator and a hardware
generator, and automates the entire design flow from PyTorch to chip layout.

and evaluation results, highlighting the optimized TNN designs
generated and design flow runtimes, along with forecasting.
Finally, Section IV summarizes key findings and future work.

II. TNNGEN DESIGN FRAMEWORK

The proposed TNNGen framework orchestrates the entire
TNN design flow by providing user-tunable parameters. It fa-
cilitates rapid TNN model development and application perfor-
mance evaluation using a PyTorch-based simulator, which then
provides the model specifications to an automated hardware
flow that delivers highly optimized physical design netlists.

A. Functional Simulator
A novel PyTorch-based functional simulator is developed as

part of TNNGen for swift design space exploration and precise
evaluation of application-specific metrics (e.g., classification
accuracy, clustering rand index, F1 score, etc.). The simulator
is flexible, offering users the ability to quickly explore a
vast design space and use the resulting insights to develop
optimized TNN models. Some key design space configurations
include: (i) single-column TNNs with an arbitrary number
of neurons (q) and synapses per neuron (p), and (ii) large
multi-layer TNNs with an arbitrary number of layers and
columns per layer with configurable inter-layer connectivity.
It supports various neuron response function models (in-
cluding step-no-leak, ramp-no-leak, leaky-integrate-and-fire),

winner-take-all inhibition (with customizable winner count and
tie-breaking options), and spike timing dependent plasticity
(STDP) learning in both supervised and unsupervised modes.
Pytorch’s tensor operations are utilized to implement all the
TNN functionalities for high simulation speed. Further, it also
supports GPU acceleration through PyTorch’s CUDA API.

TNNGen simulator models time precisely, aligning with
the direct implementation methodology in [12] wherein spike
times are dictated by precise hardware clock cycles. It per-
forms cycle-accurate temporal modeling for time windows
around onset of spikes, and dynamically switches to an event-
driven approach in windows where spikes are absent to speed
up the simulation. TNNGen employs a modular and parame-
terized approach, leveraging key functional blocks of TNNs.

B. Hardware Generator
TNNGen automates the hardware design process flow by

facilitating automated RTL generation, RTL simulation, logic
synthesis, and place-and-route while ensuring a smooth design
flow. It leverages Veriloggen package built on top of PyVerilog
[18] to provide a Python interface to the user for converting
PyTorch model specifications to Verilog RTL codes.

Table I specifies the process flows within TNNGen, the
Cadence tools utilized during each flow, and the various
libraries currently supported by the framework. Cadence EDA
tools are specifically chosen as the ASAP7 and TNN7 libraries
are primarily supported in the Cadence toolchain. However,
TNNGen is built with huge focus on flexibility and modularity
to enable easy integration of other toolchains and libraries. We
plan to open-source TNNGen for the research community to
not only leverage it for their custom TNN design flow but also
enhance it with additional capabilities.

In the TNNGen backend, to enable PyTorch-to-RTL conver-
sion, we implemented all the TNN functionalities in PyVerilog,
ensuring the generated RTL is highly optimized and aligns
with the microarchitecture in [12]. TNN7 custom macros are
incorporated to help accelerate runtime. [14] reports a 3x
speedup for logic synthesis; we go a step further and report
the place-and-route speedup in Section III. Further, TNNGen
contains a library of specifically tailored TCL scripts and
templates for automating the various design flows and PDKs,
while providing end-user with complete freedom to configure
the flow as needed. Note that TNNGen does not cover DRC
& LVS checks for signoff as it requires expert intervention.

TABLE I
INDUSTRY EDA TOOLS SUPPORTED BY TNNGEN.

Design Flow Stage Cadence Tool
RTL simulation Xcelium
Logic synthesis Genus
Place-and-route Innovus
Library support FreePDK45, ASAP7, TNN7

III. RESULTS AND EVALUATION

A. Experimental Setup
We adopt the same seven single-column designs in [15],

targeting different sensory modalities within the time series
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TABLE II
SEVEN DIFFERENT TNN CONFIGURATIONS FOR VARIOUS SENSORY
MODALITY APPLICATIONS USED FOR THE EXPERIMENTAL SETUP.

CLUSTERING PERFORMANCE (RAND INDEX) FOR TNNS VS
STATE-OF-THE-ART DTCR, NORMALIZED TO k-MEANS IS PROVIDED.

Column UCR Benchmark Sensory DTCR TNN
Size Name Modality Rand Rand
(pxq) Index Index
65x2 SonyAIBORobotSurface2 Accelerometer 0.8354 0.6066
96x2 ECG200 ECG 0.6648 0.6648
152x2 Wafer Fabrication process 0.7338 0.555
343x2 ToeSegmentation2 Motion sensor 0.8286 0.6683
637x2 Lightning2 Optical + RF sensor 0.5913 0.577
470x5 Beef Food spectrograph 0.8046 0.731

270x25 WordSynonyms 1D word outlines 0.8984 0.8473

Fig. 2. Clustering performance (rand index) for TNNs vs state-of-the-art
deep learning method DTCR, normalized to k-means. Four of the seven TNN
designs closely match the performance of DTCR. The other three TNNs fall
a bit short. Note that these are all single-column TNNs that are significantly
smaller compared to multi-layer RNNs as used in DTCR.

archive from University of California, Riverside (UCR) [22],
as representative benchmarks to showcase TNN designs. As
shown in Table II they include: 1) SonyAIBORobotSurface2 -
classify two types of walking surfaces based on accelerometer
data; 2) ECG200 - classify normal heartbeat vs. myocardial
infarction using ECG signals; 3) Wafer - classify normal vs.
abnormal silicon wafers based on fabrication process control
sensor signals; 4) ToeSegmentation2 - classify normal vs.
abnormal walking using motion sensor data, and 5) Lightning2
- detect presence or absence of lightning based on power-
density series derived from optical and RF sensor spectrogram;
6) Beef - classify adulteration levels into five classes using
food spectrograph data; and 7) WordSynonyms - classify 25
different words based on 1D series from word outlines. The
designs are evaluated using three approaches:

• Develop PyTorch TNN models as per p, q parameters in
Table II and report corresponding clustering performance.

• Use TNNGen to generate post-layout hardware metrics
across multiple cell libraries and technology nodes.

• Predict the hardware metrics without actually running any
of the process flows, using TNNGen’s forecasting feature.

TABLE III
POST-PLACE-AND-ROUTE LEAKAGE POWER RESULTS FOR THE SEVEN
TNN COLUMNS TARGETING THE SEVEN UCR BENCHMARKS, USING

THREE PDK CELL LIBRARIES: FREEPDK45, ASAP7, TNN7.

UCR Synapse FreePDK45 ASAP7 TNN7
Benchmark Count Leakage Leakage Leakage

Name (mW) (µW) (µW)
SonyAIBORobotSurface2 130 0.299 0.961 0.57

ECG200 192 0.442 1.41 0.84
Wafer 304 0.717 2.26 1.34

ToeSegmentation2 686 1.59 5.09 3.14
Lightning2 1274 2.95 9.81 5.84

Beef 2350 5.452 17.4 11.06
WordSynonyms 6750 15.66 46.69 31.13

TABLE IV
POST-PLACE-AND-ROUTE DIE AREA RESULTS FOR THE SEVEN TNN

COLUMNS TARGETING THE SEVEN UCR BENCHMARKS, USING THREE
PDK CELL LIBRARIES: FREEPDK45, ASAP7, TNN7.

UCR Synapse FreePDK45 ASAP7 TNN7
Benchmark Count Area Area Area

Name (µm2) (µm2) (µm2)
SonyAIBORobotSurface2 130 14284.466 1028.67 692.06

ECG200 192 21036.08 1513.05 1015.8
Wafer 304 33868.98 2394.01 1608.52

ToeSegmentation2 686 75654.82 5388.72 3682.63
Lightning2 1274 140,502.84 10184.45 6860.68

Beef 2350 259,167.4 18298.1 12634.83
WordSynonyms 6750 744,422.4 51158.20 35303.88

This research extends beyond previous post-synthesis stud-
ies on TNN implementations by presenting post-layout results
using multiple PDK cell libraries. Further, we provide lay-
out runtime comparisons and assess the forecasting feature
of TNNGen that can predict post-layout hardware metrics
without time-consuming EDA runs. Our runtime simulations
are run on a server with 8 Intel Xeon(R) E5-2680 CPU cores.

B. TNNGen Design Performance and Hardware Complexity
TNNGen simulator is used for modeling and rapidly simu-

lating different single-column TNN designs targeting seven
different sensory modalities. To evaluate the unsupervised
clustering performance, rand index is utilized, following the
method outlined in [8]. Table II and Fig. 2 show the rand index
results normalized to k-means for TNN and a state-of-the-
art deep learning algorithm called Deep Temporal Clustering
Representation (DTCR) [11]. It can be seen that a single TNN
column performs nearly as well as DTCR for four of the seven
benchmarks but underperforms for the remaining three. The
performance on those three benchmarks can be potentially
improved by adopting more complex TNNs with multiple
columns and layers. On average, DTCR outperforms TNNs
by nearly 12%, aligning with the results in [8]. However, it is
essential to note that in contrast to integer-based single-column
TNN models, DTCR employs a significantly more complex
multi-layer RNN model performing high dimensional floating
point tensor algebra, rendering it impractical for deployment
in mobile and edge devices due to its computational demands.
Thus, the simulator results presented demonstrate the efficacy
of small TNN designs for time-series clustering.

TNNGen hardware generator translates the above software
models to layouts. We employ three open cell libraries,
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(a) 65x2 (79.2 ns) (b) 96x2 (93.36 ns) (c) 152x2 (98.4 ns)
Fig. 3. Layouts of three generated column configurations fitted onto the same
floorplan size. p ⇥ q column configurations are provided with computation
latencies inside parentheses.

namely, 45nm CMOS FreePDK45 [19], 7nm CMOS predictive
ASAP7 PDK [13], and TNN-tailored custom TNN7 library
with nine macros as proposed in [14]. The resulting hardware
metrics are reported in Tables III and IV.

With TNN7, there is a 32.1% and 38.6% decrease in area
and leakage power compared to ASAP7, respectively, aligning
with the findings in [14]. We report only leakage power here
as total power requires fine-tuned physical rules specific to
each design, including clock tree synthesis. Nevertheless, we
do report the total power specifically for the largest column
(6750 synapses) with TNN7 library for evaluation purposes.

Using the TNN7 macros, the largest column results in
just 0.035 mm2 area and consumes only 0.067 mW total
(leakage + dynamic) power after layout, going beyond the
post-synthesis area and total power reported in [14]. The
corresponding FreePDK45 and ASAP7 area/leakage values are
0.744 mm2/15.66 mW and 0.051 mm2/0.047 mW respectively.
The advantage of 7nm designs vs. 45nm is clear. We also see
from Tables III and IV that TNN7 (with custom macro cells)
achieves better area and leakage than ASAP7.

For computation latency (i.e., per sample inference) evalu-
ation, we first consider three smaller columns (65⇥ 2, 96⇥ 2,
152 ⇥ 2) fitted for the same floorplan size, as shown in the
layouts in Fig. 3. The resulting computation times are 79.2 ns,
93.36 ns, and 98.4 ns, respectively. For the largest 270 ⇥ 25
column, the resulting latency is 180 ns. We can see that these
TNN designs are extremely fast in performing inference and
thereby ideal for low power real-time edge AI deployment.

C. Runtime Evaluation

Authors in [14] report an approximate 3x speedup during
logic synthesis due to the use of TNN7 macros during the map-
ping and optimization phases. We further validate and extend
their empirical results by taking a step further and evaluating
runtime speedup during place-and-route using Innovus.

Fig. 4 illustrates the runtime for place-and-route for increas-
ing column sizes using only ASAP7 cells vs. TNN7 macros.
As depicted, runtime scales with increasing column sizes, but
TNN7 macros yield a slower trend. On average, the layout
runtime using TNN7 in Innovus place-and-route is roughly
32% better than ASAP7. For the largest column, the entire
hardware process flow (synthesis + place-and-route runtime)
is reduced by almost 47%, indicating larger designs benefit
more in runtime speedup with TNN7’s custom macros.

Fig. 4. Innvous place-and-route runtime (in seconds) for baseline (ASAP7)
and TNNGen (TNN7) column designs.

Fig. 5. Area and Leakage power forecasting illustrating actual data points
(‘stars’) and the forecasting trendline equations.

D. Area and Leakage Power Forecasting
Hardware development is typically time-consuming. Many

researchers may not have access to commercial EDA tools.
Hence, we integrate a forecasting feature for predicting silicon
die area based on TNN synapse count without actually running
the TNNGen hardware flow. This feature leverages the linear
trends of area and leakage power with respect to total synapse
count to build a linear regression model, which is trained on
many TNNGen runs with varying TNN sizes.

The corresponding regression models for area and leakage
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TABLE V
FORECASTED (FC) POST-PLACE-AND-ROUTE 7NM PPA FOR SEVEN

REPRESENTATIVE UCR COLUMN DESIGNS USING TNNGEN.

UCR Syn. FC FC FC FC
Benchmark Count Area Area Leakage Leakage

Name (µm2) Error (µW ) Error
SonyAIBORobot... 130 627.9 +10.36% - -

ECG200 192 972.62 +6.07% - -
Wafer 304 1595.34 +2.25% 0.92 +32.9%

ToeSegmentation2 686 3719.26 -0.33% 2.98 +6.14%
Lightning2 1274 6988.54 -0.25% 6.16 -1.72%

Beef 2350 12971.1 -1.7% 11.98 -5.1%
WordSynonyms 6750 37435.1 +0.2% 35.77 +0.52%

power follow the equations:

Area = 5.56 ⇤ SynapseCount� 94.9 (1)
Leakage = 0.00541 ⇤ SynapseCount� 0.725 (2)

Fig. 5 along with Table V report the forecasting (FC) results
for area and leakage power, along with their forecasting errors.
It can be seen that area can be predicted very accurately
within 1% of the original values for large designs. Leakage
power, although inaccurate for small designs (omitted for
the two smallest designs), is also highly accurate for large
designs (the largest design only incurs 0.52% error). Fig. 5
illustrates the efficacy of the linear trendline. The forecasting
regression model is part of the TNNGen framework and can
be continually refined with more actual design data points.

IV. CONCLUSION & FUTURE WORKS

This paper serves as the first effort in creating an automated
design framework (from PyTorch model to chip layout) for
the design of application-specific TNN-based neuromorphic
sensory processing units (NSPUs). TNNGen confirms the fea-
sibility of such a framework. Initial results indicate automated
designs are highly efficient. Post-layout 7nm results show
our largest benchmark design requires only 0.035 mm2 die
area and 0.067 mW total power, with a compute latency of
180 ns. This work demonstrates the benefits of leveraging
custom macros in improving both hardware metrics and design
flow runtimes. We plan to develop a full library of custom
macros that can be smoothly integrated into the framework.
The current framework stands as an important milestone for
demonstrating the feasibility and effectiveness of an end-to-
end toolchain for the automated design of application-specific
TNNs for online sensory signal processing.

The current TNNGen has some limitations that can be
alleviated with further enhancements. TNNGen currently only
supports the design of single-column TNNs. We plan to extend
the current framework to support more diverse applications
and much more complex multi-layer TNN designs. Further-
more, currently only very limited sensory types are supported.
We plan to incorporate more diverse sensory signal encoders
in order to support a wider range of sensory modalities.
With these enhancements, it will allow TNNGen to cover a
much larger design space for implementing a wider range
of application-specific NSPUs. We plan to open source this
framework to facilitate experimentation and further enhance-
ments by the research community at large.
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