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Abstract—Neuromorphic architectures mimicking biological

neural networks have been proposed as a much more efficient

alternative to conventional von Neumann architectures for the ex-

ploding compute demands of AI workloads. Recent neuroscience

theory on intelligence suggests that Cortical Columns (CCs) are

the fundamental compute units in the neocortex and intelligence

arises from CC’s ability to store, predict and infer information via

structured Reference Frames (RFs). Based on this theory, recent

works have demonstrated brain-like visual object recognition

using software simulation. Our work is the first attempt towards

direct CMOS implementation of Reference Frames for build-

ing CC-based neuromorphic processors. We propose NeRTCAM
(Neuromorphic Reverse Ternary Content Addressable Memory),

a CAM-based building block that supports the key operations

(store, predict, infer) required to perform inference using RFs.

NeRTCAM architecture is presented in detail including its key

components. All designs are implemented in SystemVerilog and

synthesized in 7nm CMOS, and hardware complexity scaling

is evaluated for varying storage sizes. NeRTCAM system for

biologically motivated MNIST inference with a storage size of

1024 entries incurs just 0.15 mm
2

area, 400 mW power and 9.18

µs critical path latency, demonstrating the feasibility of direct

CMOS implementation of CAM-based Reference Frames.

Index Terms—Neuromorphic Processors, Cortical Columns

Computing, Reference Frame, Content Addressable Memory

I. INTRODUCTION

Over the last decade, rapid advancements in Artificial In-
telligence (AI), particularly Deep Learning (DL), have revolu-
tionized various domains, ranging from computer vision and
natural language processing to robotics and autonomous sys-
tems. Current implementations of AI algorithms, particularly
deep neural networks (DNNs), typically involve processing
massive amounts of data, employing high-dimensional tensor
processing and gradient-based backpropagation. Traditional
computing systems based on Turing computation model and
von Neumann architecture driven by Moore’s Law have served
as the primary hardware substrate fueling this AI juggernaut.
However, the exponentially increasing computational demand,
and thereby power consumption, pose significant challenges
for continued sustenance of this trend [1]–[3].

Neuromorphic computing architecture addresses these chal-
lenges by mimicking the fundamental principles of biological
neural networks in the human brain. One such approach, called
Cortical Columns Computing Systems, was recently introduced
in [4], which suggests neuromorphic architectures can be de-
veloped based on the fundamental computational units within
the brain, Cortical Columns (CCs). Such computing systems

can potentially achieve brain-like energy efficiency and brain-
like capabilities, including online continual learning.

In his recent book titled “A Thousand Brains: A New

Theory of Intelligence” [5], Jeff Hawkins proposes a new
theory on intelligence suggesting that cortical columns in
the neocortex model sensory information and knowledge in
structured Reference Frames (RFs) and continuously predict
and update the stored models as the sensing agent moves in an
environment. Hawkins postulates that such a Reference Frame,
inspired from biological grid cells in the entorhinal cortex
[6] and place cells in the hippocampus [7], implements the
common universal algorithm for achieving intelligence within
each cortical column, irrespective of the sensory modality
feeding that particular cortical column.

Following this, Hawkins’ colleagues from Numenta suc-
cessfully demonstrated visual object recognition on MNIST
using a grid cell-based network, called GridCellNet [8], that
learns a digit by associating features at certain locations within
an implicit RF and classifies digits by obtaining sequential
input features through movement in this RF. Prior works [9],
[10] have illustrated the important roles of RFs in cortical
columns, and the potential applications of this new theory
based on software simulation results. However, currently no
prior work has investigated the feasibility and the potential
of direct implementation of Reference Frames in conventional
off-the-shelf digital CMOS technology.

Based on Hawkins’ theory, authors in [4] model a Cortical
Column as consisting of an Agent and a Reference Frame,
wherein the RF maintains a map of the sensory information
collected by the agent and the agent then achieves goal-
oriented behaviors using input sensory features along with
information from the RF. In this model, intelligence arises as
a result of “movement” in the brain, wherein the system learns
to associate “features” (semi-unique identifiers for tangible
structures on an object, or abstract concepts forming a whole
idea in a cognitive map) with “locations” in an RF. This model
of intelligence necessitates having a form of associative lookup
for features given locations, and vice versa. Hence, in this
work, we propose a content addressable memory (CAM) based
microarchitecture as a step towards direct CMOS implemen-
tation of the RF. Specifically, we propose the Neuromorphic
Reverse Ternary Content Addressable Memory (NeRTCAM)
targeting inference using RFs. Key contributions include:

• We propose the Neuromorphic Reverse Ternary CAM
(NeRTCAM) - a CAM-based system that supports the key
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operations needed to perform inference using a Reference
Frame (RF). To the best of our knowledge, this is the
first work that illustrates the hardware implementation
feasibility of RF for cortical column computing.

• We specify the system architecture for NeRTCAM, in-
cluding input commands (macro-operations or macro-
ops) as well as internal micro-operations (or micro-ops).

• We build on the specialized CAM called ternary CAM
(TCAM). Instead of matching binary query with stored
ternary entries consisting of ‘don’t-care’ bits as in TCAM,
we match queries consisting of ‘don’t-care’ bits with
binary stored entries, hence named Reverse TCAM.

• We use MNIST as an example benchmark from [8]
and generate 7nm post-synthesis power-performance-area
(PPA) results for NeRTCAM. We analyze implementation
results with varying storage sizes and distribution of
hardware complexity across the system components.

This paper is organized as follows. Two key bodies of
prior work are discussed in Section II, followed by description
of NeRTCAM system architecture in Section III. Section IV
provides specific implementation details for each of the NeRT-
CAM system components. Post-synthesis PPA evaluation and
results are presented in Section V followed by summary of
our key conclusions and future work in Section VI.

II. RELATED WORKS

A. Cortical Columns Computing Systems

Neuromorphic spiking neural networks (SNNs) offer an
alternative approach to AI compute, based on brain-inspired
principles and brain-like architecture. Smith’s Temporal Neu-
ral Networks (TNNs) [11] emerged recently as a more biolog-
ically plausible approach utilizing efficient temporal encoding,
local Spike Timing Dependent Plasticity (STDP) learning
and neocortical hierarchy comprising of dendrites, synapses,
neurons, (mini)columns, and layers. Prior works have also
developed a microarchitecture model and custom building
block macros for implementing highly efficient TNN designs
[12], [13]. Authors in these works illustrated that single TNN
mini-columns can perform unsupervised time-series clustering
[14], [15] within 40 µW power while outperforming majority
of the state-of-the-art alternatives. Further, multi-layer TNNs
can achieve state-of-the-art 99% accuracy on MNIST digit
recognition within 18 mW power, while enabling fast on-chip
and online continuous learning.

Further, Hawkins’ new theory on intelligence, The Thou-
sand Brains Theory [5], proposes Cortical Columns (CCs) as
the fundamental neocortical processing units. Human brain
has around 150,000 such CCs. Higher forms of intelligence
result from larger number of CCs. The neocortex gains its
intelligence through CC’s ability to model sensory information
in structured Reference Frames (RFs), and learn models/maps
of objects through predict-sense-update feedback loops. Refer-
ence Frames are directly inspired from the biological grid cells
in the entorhinal cortex and place cells in the hippocampus,
that support spatial navigation for humans in the real world.

Fig. 1. NeRTCAM as part of Reference Frame (RF) within a Cortical Column
(adapted from [4]). It is used as a building block for RF’s key component that
holds “sensory map”, i.e., the Place Cells. NeRTCAM implements storage as
well as inference/prediction logic consistent with the models used in [8], [16].

According to this theory, each CC can store complete models
of objects in its RF, regardless of its modality or hierarchical
abstraction. This contrasts traditional view in deep learning
where the lower layers only learn primitive features (e.g.,
lines, curves) and the higher layers learn bigger and more
complete features (e.g., wheel, car). These CCs communicate
within and across modalities to reach consensus on the output
via voting. Authors in [8]–[10] demonstrate the application
of this theory through software simulations by performing
environment classification and visual object recognition on
MNIST handwritten digits using sequences of sensory inputs
correlating with corresponding sensor locations.

Additionally, Smith has shown promising simulation results
of a “macro-column” architecture [16] based on Hawkins’
Reference Frame, illustrating it using the example problem of
mouse navigating in a maze towards a specific target. Authors
in [4] noticed the strong synergy between Hawkins’ CCs
and Smith’s TNNs, i.e., CCs resemble TNNs with recurrence
embodied in the RFs, and proposed “Cortical Columns Com-
puting Systems” as an over-arching approach towards building
neuromorphic processors. Although prior works have illus-
trated the potential for energy-efficient CMOS implementation
of TNNs, no work has investigated the feasibility of direct
hardware implementation of Reference Frames (RFs) for CCs.

Authors in [4] describe a Cortical Column (CC) (Figure 1)
as consisting of two components: 1) a Reference Frame that
maintains a “map” of the sensory information, and 2) an Agent

that achieves goal-oriented behavior based on information
from the Reference Frame and the current input signals. Agent
comprises of two TNN-based compute units performing un-
supervised clustering and supervised classification. Reference
Frame involves three functional modules, called: Grid Cells

(referred to as “Where” in [4]), Place Cells (referred to as
“What” in [4]), and Output Column.

In the context of visual object recognition, the three modules
together create models of objects by tracking locations of
features on the object. Output Column determines the object
identity after incorporating voting consensus across multiple



CCs. Grid Cells generate location of sensor on the object based
on feedback from Output and the latest movement information
from the agent. Place Cells predict object features based on
the result from Grid and updates its model based on the actual
sensory input and the feedback from Output. Place Cells is
the key module responsible for learning and maintaining the
“sensory map” in a Reference Frame.

As shown in Figure 1, we propose NeRTCAM as a building
block for implementing this key “Place Cells” module in the
RF. It not only acts as a fast storage module for storing
sensory maps consisting of {feature, location, class/objectID}
triplets but also supports the fundamental operations needed
for prediction and inference.

B. Ternary CAMs

Content Addressable Memory (CAM) [17] performs fast
parallel associative lookup by comparing input search query
with stored content and returns the matched entries. Typically,
a single matching entry is selected by implementing specific
priority rules. Ternary Content Addressable Memory (TCAM)
is a special type of CAM that operates on three logic states (0,
1, and “don’t-care (X)”) unlike traditional CAM designs using
binary storage and search operations. TCAM stores entries
with ‘don’t-care’ bits and these entries are searched against
binary queries. This feature enables TCAM to perform high-
speed parallel search operations for partially matching content
via bit-level masking, making it well-suited for applications
that require fast pattern matching and routing in networking,
telecommunications, database systems, etc.

One of the advantages of CAM (and thereby TCAM) is
its ability to perform content-based searches in a single clock
cycle. By utilizing parallel search operations across multiple
memory entries simultaneously, TCAM can rapidly identify
matching patterns within a large data-set. Furthermore, the
inexact matching capability of TCAM due to the addition of
a don’t-care state allows it to model partial content matching.
This makes TCAM an efficient solution for tasks such as
firewall filtering and packet routing.

However, TCAM also has issues that need to be addressed
in practical implementations. One challenge for TCAM is
the higher power consumption [18] due to its parallel search
operations and larger number of logic states. Additionally,
the cost of TCAM can be high due to its specialized design
and complex manufacturing process. Many works in literature
have focused on efficient circuit-level implementations of
TCAM [19]–[21]. In contrast, in this work, we model TCAM
functionality using flip-flops (registers) and focus on designing
the logic and architecture required to leverage TCAM as a
building block for implementing Reference Frames. Our future
work will focus on integrating circuit-optimized TCAM cells
into our subsequent NeRTCAM designs.

One distinguishing attribute of proposed NeRTCAM is that
instead of storing ternary entries with ‘don’t-care’ bits and
matching them with incoming binary inputs as in conventional
TCAM, we store binary entries (logic states 0, 1) and provide
ternary data with don’t-care bits as search input. Hence, we

Fig. 2. NeRTCAM System consists of four main components: 1) Preprocess,
2) RTCAM, 3) State Machine, and 4) Prediction Map. Preprocess and
prediction map are combinational, whereas RTCAM and state machine are
sequential. The system as a whole takes in input SDR and control commands
from agent and outputs valid set of feature-location-class triplets.

call it “Reverse” TCAM (RTCAM). This is due to the fact that
agent stores fully specified information, i.e., {feature, location,
class} triplets, but during prediction and inference, it either
provides one or both of location and feature with the missing
entries masked by don’t-care bits.

III. NERTCAM ARCHITECTURE

In this section, we present the proposed NeRTCAM (Neu-
romorphic Reverse Ternary Content Addressable Memory)
architecture and describe its design and operation. First, a
system overview is provided followed by description of input
commands (i.e., the macro-operations queried to NeRTCAM
by the agent). The system components and internal micro-
operations will be discussed in detail later in Section IV.

A. System Overview

NeRTCAM (depicted in Figure 2) is designed to serve
as a fundamental building block for implementing Reference
Frame (specifically the most important “Place Cells” [4]),
storing and retrieving information in the form of {feature,
location, class} triplets. It is to be noted that it can also
be used as a separate structure to which the “Place Cells”
assign learned information for storage and fast retrieval during
inference. NeRTCAM performs three main functions within
the RF: 1) Predict feature and class given location of the
sensor, 2) Predict sensor location and class given input feature,
or 3) Infer class given location of the sensor and the sensed
feature at that location. Each of these operations can output
multiple matching entries. Further, NeRTCAM supports fuzzy
matching as will be explained later in Section IV-A.

In order to achieve this, NeRTCAM is designed with four
major components as shown in Figure 2, namely, Preprocess,



RTCAM, State Machine, and Prediction Map. NeRTCAM
takes in instructions from agent in the form of control com-
mands (Agent Control) and fuzziness amount (Padding). It also
receives an input SDR (sparse distributed representation as
in [8]) that is used to query matching entries based on the
content stored in NeRTCAM. At the output, it generates three
different vectors indicating valid set of locations, features and
classes consistent with the information collected by the agent
as it navigates an environment. Alongside, three status signals,
namely, full, error and busy are also generated. High-level
functionalities of the four components are described next.

The preprocess block is responsible for creating the “don’t-
care” (DC) mask pertaining to the operation the agent wishes
to perform, as well as modifying it to reflect the desired
fuzziness for matching. The output of this block (the DC mask)
is fed to the RTCAM along with input SDR. The input SDR
and DC mask are both vectors of same length with certain
number of bits reserved for representing feature, location and
class. Feature, location and class sections within the SDR
are assumed to be 1-hot. RTCAM is the storage element
possessing all the learned triplets by the agent and it outputs
all matching valid outputs, i.e., class and feature/location
predictions (Mem Out) corresponding to the input SDR and
DC mask. The state machine converts control commands from
agent (macro-operations) to internal micro-operations for RT-
CAM that performs memory-native functions such as lookup.
Lastly, the prediction map is used to condense the multiple
matching 1-hot memory output into k-hot binary vectors that
represent the current set of valid features, locations, or classes
to be informed to the agent.

B. Agent Control Commands

NeRTCAM supports six control commands: CLEAR, RE-
SET, STORE, DELETE, INFER, and PREDICT. These com-
mands form a concise view of how an RF-based system can
support an agent in the cortical columns computing paradigm.
A flowchart describing the steps involved in the four opera-
tional commands (STORE, DELETE, INFER, PREDICT) is
presented in Figure 3. The two simple commands (CLEAR,
RESET) are omitted from the figure for brevity. All six
commands are explained below.

1) CLEAR and RESET: CLEAR and RESET are simple
housekeeping operations for NeRTCAM. The input SDR pro-
vided by agent is irrelevant for both these operations and hence
is ignored by the system. When performing a CLEAR, the
system clears all of its memory contents. This is typically used
during initialization. It can also be used by the agent whenever
it wishes to start from scratch with an empty memory (e.g.,
migration to a completely new environment or task that’s
unrelated to previously learned information).

RESET is an operation that the agent can use to force the
system to ‘forget’ the sequential information it collected while
performing an identification on a certain object. Note that an
object is identified by sequentially collecting sensor location-
feature information and remembering the valid set of classes
(object IDs) that are consistent with all location-feature pairs

Fig. 3. Agent Control Commands Flowchart: The process of executing four
key commands from the agent (STORE, DELETE, INFER, PREDICT) is
illustrated in terms of the different steps involved. STORE and DELETE are
performed with fully specified input SDR with feature, location and class.
INFER and PREDICT are performed with partially specified input SDR along
with corresponding preprocessed don’t-care (DC) mask.

observed so far. Thus, RESET is intended to be used either
after a successful identification as it prepares the system to
aid in the agent’s observation of a different object, or after a
failed identification so that the agent can either try again or
move on. It can also be used whenever the agent so pleases.
Note that RESET does not reset or clear the stored entries
(i.e., feature-location-class triplets).

2) STORE and DELETE: STORE and DELETE are slightly
more complex operations compared to RESET and CLEAR.
STORE is used to add new information the agent will use
for identification, into the system. When performing a store,
the agent must specify exactly what feature at what location
belongs to what class in the input SDR. This is done only
when the agent is fully confident about its orientation within an
environment. Relatively, during identification, agent’s observa-
tions are more general (partial), and the system’s primary goal
is to match general observations with specific, remembered
information. Moreover, to avoid redundancy, when performing
a store, the system will check if the desired information has
already been stored. If an exact match exists, the agent is
notified via an error message, or else the information is stored
normally. DELETE is very similar; the only difference is that
it sends an error when an exact match is not present; or else
that match is deleted normally.

3) INFER and PREDICT: These are the two main oper-
ations that assist the agent in identifying an environment or
object. As part of INFER, the agent specifies a location and
feature but no class. This is to replicate the act of the agent
seeing a feature at a location, and then trying to remember
which classes said pair belongs to. When beginning the
identification process, a lookup is done on all information that
is stored in the system. Any classes that contain that relevant
pair are remembered as valid, and in turn, data pertaining to
those valid classes will be the only data that will be used



Fig. 4. RTCAM Module: This is the memory array that stores SDRs in the
form of triplets - location, feature, class, along with two additional bits for
valid (V) and empty (E). Assuming ‘N’ number of entries with 3 bits each for
location, feature and class, each entry hold 11 bits in total (indicated by Nx11).
It takes in input SDR (I) and agent control commands (control) from the agent,
DC mask (DC) from preprocess, and internal operation (Operation) from the
state machine. It generates valid location-feature-class triplets (Mem out) and
set of k valid classes as k-hot vector (classes).

for the next lookup. During the next lookup, the classes that
contain the new location-feature pair is determined out of the
remaining valid classes. This continues until there is only
1 class left (successful identification) or something is seen
that does not pertain to any of the relevant classes (error
notification to agent).

The PREDICT operation has two variations that essentially
perform the same desired functionality, as mentioned in Sec-
tion III-A. This operation is used when the agent is unable to
perform a full lookup but it has some partial information, either
a location or feature, and wishes to see if said information is
present in any of the valid entries. So a lookup is performed
with either just feature or just location. The lookup returns
which of the current valid classes contain said feature or
location as well as what location or feature that input refers to
(given a location, a list of features is provided and visa versa).

IV. NERTCAM IMPLEMENTATION

We now present each of the four components of the NeRT-
CAM system in further detail below.

A. Preprocess

The preprocess block is a combinational component of the
system, that takes in agent control commands and padding
input to generate DC vector, as shown earlier in Figure 2. For
illustration simplicity, we use a 9 bit SDR (3 bits each for
feature, location, and class). Hereafter, ‘I’ refers to the input
SDR from the agent, and ‘DC’ refers to the generated ‘don’t-
care’ vector from the preprocess block.

• RESET and CLEAR: I and DC are completely ignored,
and are expected to be held low.

• STORE and DELETE: I = {feature, location, class} with
3-bit non-zero 1-hot vector for each; DC = 9’b0. Note

that for both these operations, I is completely specified
and DC is ignored.

• INFER: I = {feature, location, 000}; DC = 000000111.
Note, this assumes a padding value of 0; padding for
fuzziness is explained in the next paragraph. Here, the
agent is viewing a feature at a location and does not have
any class data to match, so it is ignored.

• PREDICT Feature: I = {000, location, 000}; DC =
111000111. For this operation, the agent provides a
location (with again a padding of 0). The feature and class
bits are ignored as no data was provided for a match.

• PREDICT Location: I = {feature, 000, 000}; DC =
000111111. In similar fashion, the agent provides a
feature, so the other two elements of the SDR are ignored.

Additionally, the system allows adding fuzziness to location
search via padding. In order to obtain features corresponding
to all nearby locations during PREDICT Feature, DC vector
is padded with 1’s around the ‘1’ in the location part of the
SDR. This is equivalent to introducing fuzziness to predict
close-by features. Further, more precisely placed padding can
mitigate the spatial information loss due to conversion from
2D grid to 1D vector. Note that padding in DC is only done
for location part of the SDR as it does not make sense to
introduce fuzziness to feature or class.

As an example, suppose the location part of the SDR is now
5 bits long and is equal to 00100, and the padding amount
is 1. In this case, when performing a lookup, we need to
search location values 00100, 01000, and 00010 to register
as a match. This is achieved by changing the resulting DC
vector’s location section from all 0s (as in PREDICT Feature

bullet point above) to 01110.

B. RTCAM

Figure 4 illustrates the RTCAM module with its inputs and
outputs. It consists of four sub-modules as described below:

1) Memory Module: This is currently implemented using
flip-flops (registers). Each entry in the memory module con-
sists of (f+l+c+2) bits where ‘f’, ‘l’, and ‘c’ refer to the
number of bits for feature, location and class respectively. The
additional 2 bits denote valid (valid class) and empty (empty
entry). Note that the corresponding input SDR and DC vector
will have (f+l+c) bits. As shown in Figure 4, it has two internal
outputs, mem out and valid entry. The latter is used by the
state machine to make decisions, and the former is all the data
sent to the prediction map and must be condensed during a
prediction. The other output is infer class out which is a k-
hot vector of the valid classes after a successful inference. The
valid bits are automatically updated each cycle with a lookup.

2) Validation Module: Validation is crucial to this system
as it keeps track of the valid classes throughout multiple
identification cycles in sequence. This step is performed after
each successful lookup portion of INFER which only marks
entries valid with matching feature-location pair. But, the next
search will not have that same location and feature, so all
classes from the result of a previous search must have ALL



their entries marked as valid. To do this, we perform an internal
validation operation.

For this operation, after a lookup, we create a bit represen-
tation of all valid classes, 1 bit high for each class’s place in
the 1-hot bit structure. We then pad it with 0s until it’s the
same size as an input for I and pad it with 1s for DC. We
then reset the validation bits and perform another ‘lookup’.
The specified input is used to perform a search that ignores
all bits except those that would be high to represent the valid
classes. As classes are stored as 1-hot, with all 0s not valid,
this means entries with classes having a 1 bit in any of the
marked bits, will be marked as valid. Between each successful
INFER, we output the condensed class vector so that the agent
knows that classes are currently valid after this operation.

3) Context Switch Module: The context switch feedback
loop is used to denote the system level functionality of being
able to determine when the agent has started viewing a new
object without performing a reset. In this case, a normal lookup
fails, and rather than saying the entire inference fails, we reset
the valid bits, try again, and see if there are any valid entries.
If yes, then we know that the agent has switched to viewing a
new object and can validate accordingly. If not, then we know
that the inference simply failed, as the agent tried to perform
an inference with unlearned data.

4) Store/Delete Match Module: When storing a new value,
we need to ensure the data requested to be stored is not already
in the RTCAM. For a store, we first perform a lookup of the
store itself, and if we get any exact matches (1s in the valid
bits of the RTCAM), then we simply reset the valid bits and
await the next input. If we get no exact matches, then we find
the next empty entry in the RTCAM and store the data there,
setting its empty bit to 0 (now indicating not empty). We then
reset the valid bits and wait for the next input. If there are
no empty entries in the RTCAM, then we fail the store and
notify the agent. Delete operates similarly, except finding an
exact match results in the desired operation (i.e., delete) and
no match results in failure of the operation and resultant error
notification to the agent.

C. State Machine

The agent operations vary widely in terms of complexity.
To maximize clock frequency, some of them are performed
across multiple clock cycles. Some agent operations may
require multiple clock cycles involving a sequence of internal
“micro-operations”. A set of internal operations (“micro-ops”)
is developed to aid the implementation of agent operations
(“macro-ops”) that get executed via a sequence of single-cycle
internal operations. These internal operations (micro-ops) are
generated by a state machine (Figure 5) and are listed below:

• clear: clears all the information stored in the RTCAM and
sets all the empty bits high.

• reset: resets all valid bits back to 1, in turn making
the system ‘forget’ what the agent has observed in this
identification cycle/the previous lookup.

• store: adds an entry to the RTCAM and sets its empty bit
low and valid bit high.

Fig. 5. State machine: It consists of four states (SS, FL, IR, and SL). Each
transition shows agent control command in blue followed by internal operation
in pink, along with valid (V) and not valid (NV) bits from memory output.
Status of the control command such as Success, Fail or Context Switch is
provided in parentheses. Green lines indicate success and red lines indicate
failure of the command.

• delete: removes an entry from the RTCAM and sets the
empty bit high.

• lookup: performs a query into the RTCAM; valid bits are
updated and stored accordingly.

• validate: given a previously successful lookup, mark all
entries that contain the valid classes as valid and output
said classes.

The state machine is also responsible for error generation.
It generates four types of errors to be sent to the agent:
1) Delete Failed - no matching entry, 2) Store Failed: data
already present, 3) Infer Failed - the system cannot continue
as a specified lookup returned with no valid entries remaining
in the RTCAM, and 4) Context Switch - the system realizes
that the agent has moved onto looking at a new, learned object
and has adjusted accordingly.

Figure 5 shows the state transition diagram. The state
machine consists of four states: Starting State (SS), First

Lookup (FL), Internal Reset (IR), and Second Lookup (SL).
Each transition is marked by the input agent control command
(blue capitalized), followed by the generated internal operation
(pink) to be executed by the RTCAM memory. RTCAM, in
turn, provides valid (V) or not valid (NV) signals for its
memory output, that the state machine uses to determine its
transitions. Green lines indicate successful control commands
and red lines indicate failure of those commands. SS is the
default state and the only state in which the NeRTCAM
accepts new input from an agent; system is considered busy
(B) in other states. CLEAR, RESET, and PREDICT commands
execute in one clock cycle as denoted by the self-loops in SS.
STORE and DELETE require a lookup followed by a reset
of the valid bits, taking two cycles in the event of failure,



and an additional cycle for the actual store/delete operation if
successful. INFER is executed through a lookup followed by
validate, thus finishing in two cycles if successful. On failure,
it performs a reset instead of validate after lookup, and takes
two additional cycles - one cycle for a second lookup and
another cycle for returning with failure or success (resulting in
context switch as discussed in IV-B3). Figure 5 clearly depicts
these transitions for every case. An example is provided below
for ease of interpretation of the state transition diagram.

Beginning in the SS state, consider agent provides an INFER
command. The system transitions to FL with busy (B) asserted
and executes a lookup internal operation in the RTCAM to find
matching entries. On success, the system transitions back to SS

and executes a validate operation in the RTCAM to generate
the output. On failure to find any valid entries (indicated by
NV), the system checks for a context switch to a new object.
This is done by first transitioning to IR and performing a
reset of the valid signals, followed by a second lookup in
the next cycle in the SL state. The reset enables the system
to detect new objects. If valid outputs are found after second
lookup, a successful context switch is performed by executing
validate in the RTCAM and returning back to SS. On failure,
it executes reset instead of validate, returns to SS and notifies
an “Infer Failed” error to the agent. Note that the busy signal
is continuously asserted until the system reaches SS, when it is
finally de-asserted. Overall, on a context switch, the operation
takes four clock cycles owing to four state transitions.

D. Prediction Map

The prediction map (as illustrated earlier in Figure 2) is
another combinational block of the system. Its primary purpose
is to output the desired information specified by the control. It
condenses the data given by the mem out signal in the same
way that the validate system condenses valid bits. However,
it has the capability to do this for all 3 sections of the SDRs.
The idea is to predict the set of valid features/locations/classes,
with a one-hot class output indicating a strong prediction for
one particular class that the agent can choose to use (i.e.
a classification). Otherwise, it just indicates the set of valid
classes remaining at this point in the prediction. The same
form of compaction is needed to select only the valid entries
from the previous stage and condense it into a singular k-hot
vector, that could then be used by the agent to distinguish
which features/locations are expected to be seen next.

If the agent operation specified is not a type of PREDICT,
then nothing is given as output. Depending on the type of
predict, the location output or feature output will be held low.
For PREDICT FEATURE, the location output is low and vice
versa. This is because after performing the lookup, all valid
entries in the RTCAM are going to have the same location (for
a predict feature), which is the location provided in the input.
So, there is no reason to output this. Also, in case the generated
output is 0 (not purposefully held 0), it implies the prediction
failed and the agent is trying to predict a location/feature pair
that is not valid in the given identification cycle.

TABLE I
7NM CMOS POST-SYNTHESIS PPA RESULTS FOR NERTCAM WITH THE
NUMBER OF ENTRIES SCALED FROM 64 TO 1024. EACH ENTRY STORES

165 BITS = 163-BIT SDR (128 BITS FOR FEATURE, 25 BITS FOR
LOCATION, 10 BITS FOR CLASS) + 1 VALID BIT + 1 EMPTY BIT (BASED ON

MNIST BENCHMARK REQUIREMENTS FROM [8]).

Number of Power Latency Area
Entries (mW) (µs) (µm2)

64 26.30 2.06 9,468.73
128 53.02 2.26 18,912.53
256 106.54 3.08 38,961.76
512 213.39 6.91 77,441.56
1024 400.23 9.18 153,914.94

V. RESULTS & EVALUATION

A. Experimental Setup & Methodology

Parameterized RTL designs for NeRTCAM and all its
components are implemented in SystemVerilog. Functional
RTL simulation is performed using Cadence Xcelium and
logic synthesis using Cadence Genus with open-source 7nm
predictive ASAP7 PDK [22]. Clock frequency used is 100 kHz
to achieve real time operation similar to biological scales.

For correctness testing, rigorous testbenches are created
to test every component including every state transition for
the state machine. Post-synthesis power measurement is done
using switching activity file generated through functional RTL
simulation. The test vectors provided for power measurement
are sampled from MNIST SDRs as used in [8]. Authors in [8]
generate a 128-bit feature vector on a 5x5 grid using a CNN,
for each MNIST digit. Aligning with this approach, we use
25 bits for location, 128 bits for feature, and 10 bits for class
(for 10 handwritten MNIST digits). This implies a total SDR
length of 163 bits. This SDR configuration is used to generate
the post-synthesis results (not 3 bits each, which was used as
an illustrative example in the earlier sections). Lastly, note that
the feature vectors in [8] are not 1-hot but are 19-hot, however
our system can be extended to support k-hot feature vectors
as long as locations and classes are still 1-hot.

B. 7nm PPA Evaluation

NeRTCAM is able to successfully demonstrate sequential
inference on MNIST as presented in [8]. The SDR bit lengths
for post-synthesis evaluation are determined using the same
MNIST example from [8] as mentioned earlier. Accounting
for the two additional valid and empty bits, each entry consists
of 165 bits in total. The number of entries is varied from 64
to 1024, totaling five design configurations.

Table I presents the post-synthesis 7nm power, performance
(latency) and area results for varying storage sizes (number of
entries) of NeRTCAM. Area and power scale almost linearly
with respect to the number of entries, almost doubling with
every 2x increase in size, whereas critical path latency scales
much more gradually. The smallest assessed NeRTCAM with
64 entries incurs less than 0.01 mm2 area and 26.3 mW
power. Even NeRTCAM storing 1024 entries consumes just



Fig. 6. Hardware Complexity (Area) Breakdown for NeRTCAM in terms
of its four components: Preprocess, RTCAM, State Machine, and Prediction
Map. RTCAM consumes 82.2% of the area, followed by 10.5% for Prediction
Map and 7.3% for State Machine. Preprocess incurs negligible complexity.

0.15 mm2 area, 400.23 mW power, and 9.18 µs latency which
is very amenable for real-time operation. This area footprint is
about 0.1% of typical mobile SoCs where memory dominates
die area, thus demonstrating the potential and feasibility of
implementing multiple NeRTCAM modules in parallel or in
cascaded fashion to achieve highly scalable compute fabric.

Authors in [8] illustrate a few key desirable features for
their proposed neural network (GridCellNet) inspired from
Grid Cells and Reference Frame: 1) Learning with Arbi-

trary Sequences: GridCellNet significantly outperforms similar
LSTM and KNN implementations when MNIST inference is
performed using arbitrary sequences of feature-location inputs.
In fact, in this challenging biologically motivated scenario,
KNN is unable to learn well and reaches only ⇠30% accuracy,
whereas LSTM and GridCellNet achieve ⇠65% and ⇠80%
respectively. 2) Few-shot learning: With arbitrarily sequenced
inputs, GridCellNet achieves above 70% accuracy with only 5
training samples per class and reaches 80% with 20 samples
per class, while consistently outperforming LSTM and KNN
implementations. 3) Rapid inference with partial sequences:
GridCellNet can successfully classify majority of the MNIST
digits in under 10 sensations, i.e., it doesn’t require all 25
sensations (at 25 locations) to infer the digit. These results
from [8] indicate that NeRTCAM with 500 entries (10 sen-
sations per sample, 5 samples per class, and 10 classes) can
successfully achieve >70% accuracy for arbitrary sequences of
inputs outperforming LSTM and KNN implementations, while
consuming just above 200 mW power and 0.08 mm2 area.
Note that GridCellNet’s largest configuration (25 sensations
per sample, 20 samples per class, and 10 classes) results in
5000 entries for NeRTCAM, which is an overspecification and
unnecessary for successful MNIST inference.

Lastly, Figure 6 illustrates the hardware complexity break-
down in terms of area, for the four major components of
NeRTCAM. RTCAM memory consumes majority (82.2%)
of the area as expected, followed by 10.5% for Prediction
Map and 7.3% for State Machine. These three components

scale almost linearly with the number of entries. In contrast,
Preprocess barely scales with number of entries and incurs
negligible complexity. The dominant contribution to hardware
complexity from RTCAM memory module implies replace-
ment of flip-flops with custom TCAM cells in RTCAM can
potentially provide significant improvements in PPA.

VI. CONCLUSIONS & FUTURE WORK

Cortical columns with Reference Frames are the funda-
mental units of intelligence within the brain. Prior works
have shown the application potential for Reference Frame-
based models in performing movement-based visual object
recognition and environment classification through software
simulation. This work serves as the first attempt towards
CMOS implementation of such a Reference Frame and pro-
poses a Content Addressable Memory (CAM)-based building
block - Neuromorphic Reverse Ternary CAM (NeRTCAM).
NeRTCAM consists of four major components, Preprocess,
RTCAM, State Machine and Prediction Map and can perform
sequential prediction and inference as the sensor moves in an
environment. Out of these, RTCAM incurs majority of the
hardware complexity. NeRTCAM system storing 1024 entries
(about 100 entries for each digit) can perform successful infer-
ence through sequential samples of MNIST [8] while incurring
only 0.15 mm2 area, 400 mW power and 9.18 µs latency.
Such sequential inference, especially with arbitrary sequences
of sensations from an image as typically occurs in biology,
is challenging for traditional ML algorithms like LSTMs and
KNNs. The main goal of this work is to demonstrate the
feasibility of direct CMOS implementation of a biologically
plausible CAM-based Reference Frame and thereby serve as
the initial baseline for future follow-on works on RF-based
neuromorphic processors.

In terms of future work, an immediate next step is to
integrate specialized circuit-level TCAM cells into RTCAM,
replacing the current highly expensive and power-hungry
flip-flops. As noted earlier, this modification can result in
significant improvement in area and power consumption of
NeRTCAM. A vast body of prior literature on TCAM circuit
implementations can be leveraged for this. Another issue
is the 1-hot assumption of SDRs which exhibits inefficient
scaling. While we believe many current applications can
be converted to 1-hot, efficient mechanisms to handle k-hot
SDRs (especially locations and classes) can be devised for
improved scalability. Additionally, NeRTCAM only serves as a
building block for the “sensory map” storage within Reference
Frame. Other components such as “Grid Cells” and the overall
Reference Frame architecture including the learning algorithm
need to be developed to build a complete system.
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