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“There is nothing that is done in the nervous system that we 

cannot emulate with electronics if we understand the principles 

of neural information processing.”

— Carver Mead, "Neuromorphic Electronic Systems"  Proceedings of the IEEE,  1990



Motivation

❑ The human brain is capable of:

• Accurate sensory perception

• High level reasoning and problem solving

• Driving complex motor activity

❑ With some very impressive features:

• Extremely efficient (20 watts)

• Very flexible – supports a wide variety of cognitive functions

• Learns dynamically, quickly, and concurrently with operation

❑ Far exceeds anything conventional machine learning has achieved

• Will the trajectory of conventional machine learning ever achieve the same 

capabilities?

• OR should we seek new approaches based on the way the brain actually 

works?
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Milestone Temporal Neural Network

❑ Continual, Unsupervised Clustering

• Learn and identify similar input patterns and map them to concise cluster identifiers (CIds)

• Training and inference done concurrently and continually
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❑ Emergent

• All neural operations are local

• Global behavior emerges

❑ Hardware implementation 

• Fast

• Energy efficient

• Implementable with digital 

CMOS

❑ This is a processing core

• Not a complete system

• Interfaces with external world will 

be required

• For advanced apps this will be 

challenging

It has a mind of its own!

sequence of 

input patterns
sequence of 

output cluster 

identifiers (CIds)

Temporal Neural Network

Inference

non-binary 

combinatorial 

network

concurrent, local 

adjustment of 

synaptic weights

Training

similar input patterns 

map to same CId



Outline

❑ The Biological Neocortex

❑ Computer Meta-Architecture

❑ Primitive Abstraction: Biological to Computational

❑ Column Level Abstraction (“RTL”)

❑ Mathematical Underpinnings

❑ Digital CMOS Implementation

❑ Closing Remarks
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The Biological Neocortex



The Neocortex

❑ Neocortex

• The “new shell” surrounding the 

older brain

• Performs:

sensory perception

cognition

intellectual reasoning

generation of high level motor 

commands

❑ Thin sheet of neurons 

• 2 to 3 mm thick

• Area of about 2500 cm2

• Folds increase area

• Approx. 100 billion neurons 

• 10K synapses each
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❑ Physical architecture probably corresponds to functional architecture

❑ Physical Hierarchy (top down)

• Lobes

• Regions

• Subregions

• Macro-Columns

• Micro-Columns

• Neurons

Physical Architecture of the Neocortex
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Physical Architecture Bottom-Up
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[Felleman and Van Essen 1991]

Micro-Column 

O(100) neurons

Macro-Column 

O(100) micro-columns

Regions, Subregions

Many Macro-Columns

from Ramon y Cajal

(via wikipedia)

Neuron

[Mountcastle 1997][Hill et al. 2012]
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Biological Neurons
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from deFelipe 2011

Excitatory pyramidal neuron surrounded by 

three inhibitory neurons of different types

tiny dots are Synapses

(connection points)

Dendrites (Inputs)

Axon (Output)

Copyright JE Smith  (June 2019)

Body



Excitatory Neuron Model

1) A volley of spikes is applied at inputs

2) At each input’s synapse, the spike produces a weighted response function

3) Responses are summed linearly at neuron body

4) An output spike is emitted if/when potential exceeds threshold value ()
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❑ Basic Spike Response Model (SRM0)  -- Kistler, Gerstner, & van Hemmen (1997)
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Meta-Architecture



Functional Block Hierarchy

❑ Engineering highly complex systems requires abstraction

• Conventional computer architecture contains many levels of abstraction

Architecture and Abstraction
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RTL functional blocks

Application Software

Machine Language statements 

HLL Procedure Hierarchy

Logic gates

Physical CMOS

HLL statements 

+ Processor Core Memory

lowest practical design layer

lowest practical design layer

fundamental abstraction: hardware to software

fundamental abstraction: electrical circuits to logic



❑ Comprehending neocortical computing will require levels of abstraction

• We (humans) can only comprehend assemblies of a certain limited complexity

So, we rely on abstraction

• Fortunately, the physical hierarchy seems to match our ability to comprehend

Each functional block composed of 10 to 100 lower level blocks

Neuro Architecture Stack
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Neuro Architecture Stack

Macro-Columns

Lobes

Neocortex

Feedforward/Micro-Columns

Model Neurons

Region Hierarchy

Biological Neurons

fundamental abstraction: electrical circuits to primitive 

computing elements

fundamental abstraction in here somewhere? 

Spatial Thinking

Temporal Processing



❑ Start at the bottom of the stack

• With biological neurons

❑ Reverse-architect to the top

• A Neuromorphic Architecture 

implements the computing paradigm(s) 

used in the neocortex 

• Neuromorphic Circuits  are electrical 

circuits that function in ways similar to 

neurons and can be used to implement 

Neuromorphic Architectures.

• Neuromorphic Architectures do not 

require Neuromorphic Circuits

Long Term Roadmap
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Macro-Columns

Lobes

Region Hierarchy

Neocortex

Feedforward/Micro-Columns

Model Neurons

Biological Neurons

Neuro Architecture Stack

Neuromorphic 

Architecture

Neuromorphic 

Circuits



❑ First, focus on abstraction from biological 

neurons to computing elements

• Consider results from experimental neuroscience

• Consider models from theoretical neuroscience

• Postulate a set of basic elements 

❑ Next, develop quasi-standard building blocks 

(10-100 neurons)

• Analogous to RTL blocks

• Develop these blocks by constructing and 

experimenting with Temporal Neural Networks

❑ First Major Milestone: Deep TNNs

• Described earlier

❑ Three layers of abstraction are simultaneously 

in play:

• Model neurons

• Column-level quasi-standard assemblies

• Macro-Columns

Near Term Roadmap
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Macro -Columns

Feedforward /Micro -Columns

Model Neurons

Biological Neurons
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Primitive Abstraction: 

Biological to Computational

Model Neurons

Biological Neurons



Basic Architectural Elements
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Temporal Coding
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❑ Information is communicated via transient events 

• e.g., voltage spikes

• Hereafter “spike” is shorthand for “transient 

temporal event”

❑ Values are encoded via spike timing relationships 

across parallel communication lines

• Based  on spike times relative to first (t = 0)

• Low resolution: 1-in-8, say

• Example is not a “toy” – values are realistic

Note: in practice, coding is sparser than in this example

0

3

4
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4

∞
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time

t = 0



The Temporal Resource

❑ The flow of time has some ultimate engineering advantages

• It requires no space

• It consumes no energy

• It is free – time flows whether we want it to or not

❑ Yet, we (humans) try to eliminate the effects of time when 

constructing computer systems

• Synchronizing clocks & delay-independent asynchronous circuits

• This may be the best choice for conventional computing problems and 

technologies

❑ How about natural evolution?

• Tackles completely different set of computing problems

• With a completely different technology

FCRC
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The flow of time can be used effectively as a

communication and computation resource.



Compare with Rate Coding
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❑ Plot spikes on same biological 

time scale

❑ Both methods convey similar 

information

❑ Temporal method is

• An order of magnitude faster

• An order of magnitude more 

efficient (#spikes)

10 msec

The temporal coding method has 

significant, broad experimental support

• The rate method does not.



Temporal Neural Network
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❑ A feedforward network of model neurons

• Values communicated via temporal codes (implemented as “spikes”)

• Feedforward flow (without loss of computational generality)

• Computation: a wave of spikes passes from inputs to outputs

• At most one spike per line per computation
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Neural Network Taxonomy
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❑ Primary goal: a computing paradigm that learns in an 

unsupervised, continual, fast, and energy efficient way

• Separates this research from vast majority of “Spiking Neural Network” 

(SNN) research
Neural Networks

“SNNs”

-classification

-supervised

-compute-intensive training

-accuracy is a struggle

-energy efficiency in                  

doubt

spikes

“SNNs”  (TNNs)

-clustering

-unsupervised

--simple, dynamic training

-accuracy-neutral(?)

-probable energy                      

efficiency benefits

localized 

unsupervised 

“SNNs”

-classification

-supervised

-compute-intensive training

-accuracy is a struggle

-probable energy                      

efficiency benefits

temporal

spikes

supervised

backprop

implementation

trainingrates

classic ANNs →

deep CNNs

-classification

-supervised

-compute-intensive training

rates
theory

implementation



Excitatory Neuron Model (repeat)

1) A volley of spikes is applied at inputs

2) At each input’s synapse, the spike produces a weighted response function

3) Responses are summed linearly at neuron body

4) An output spike is emitted if/when potential exceeds threshold value ()
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❑ Basic Spike Response Model (SRM0)  -- Kistler, Gerstner, & van Hemmen (1997)
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Bulk Inhibition
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from deFelipe 2011

❑ Inhibitory neurons act en masse over a 

local volume of neurons

• A “blanket” of inhibition

❑ A few inhibitory neurons control many 

excitatory neurons

• Up to 30 synapses per target excitatory 

neuron (avg. = 15)

• Some connections directly to excitatory body 

and axon

❑ Model as parameterized Winner-Take-All 

(WTA) inhibition

❑ Note: this mechanism is probably built into 

a soft synchronization method based on 

inhibitory oscillations
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inhibitory interneurons

WTA

Inhibition

triggered by 

first spike



STDP

❑ Spike Timing Dependent Plasticity – where the magic is
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classic STDP

• Each synapse updates weight based on 

current weight and local spike time 

relationships

• Implemented as a small finite state 

machine

• Many methods under study

• Decision tree + update functions:

Output 
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No Output 

Spike

Input Spike

No Input 
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Input Spike

No Input 
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if x(s)   z(s) then w(s+1) = w(s) + B(µ1)

else w(s+1) =  w(s) - B(µ2)

w(s+1) =  w(s) - B(µ3)

w(s+1) = w(s) + B(µ4)

w(s+1) = w(s)

Input Spike

wOutput Spike STDP

w (s)

w (s+1)

learning/forgetting 

params

x (s)

z (s)



Example: Decode Matrix

❑ STDP establishes weights in a way that decodes the most frequent input patterns

• Relies on bimodal synaptic weight distribution (0 or Wmax)

• Timing of output spikes depends on response function

Step no-leak in this example

• In general decodes clusters rather than individual patterns
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❑ In the neocortex, computation is 

inextricably combined with obfuscating 

infrastructure

❑ In the computer architecture “lab”, we can 

consider the computing paradigm absent 

all the complications
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from thestargarden.co.uk

How can the computing model be simple?
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A Pantheon of Neuroscience Architects
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❑ Theoretical neuroscientists have been developing brain-based computing 

paradigms for over two decades

• Lots of good ideas have been put forward

• Computer architects don’t start from scratch

Simon Thorpe

Damien Querlioz

Rudy Guyonneau

Rufin VanRullen

Timothée Masquelier

Wolfgang Maass

Henry Markram

Wulfram Gerstner

Sander Bohte

Wolfgang Singer

Pascal Fries

temporal coding, 

STDP, 

TNN architectures

TNN (SNN) theory

STDP

Neuron Models, STDP

TNN architecture

Inhibitory oscillation; 

soft synchronization
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Column Level Abstraction: “RTL”



Column Level Abstraction
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❑ Combine primitives into higher level computing assemblies

• Analogous to Register Transfer Level (RTL) in digital logic

• Design will probably be done at this level
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Macro-Columns

Feedforward/Micro-Columns

Model Neurons

Biological Neurons



Computational Column (CC)

❑ Basic TNN building block

❑ Learns and maps inputs having 

similar features to the same 

Cluster Id

❑ Input lines may be interpreted as 

features

• The presence of a spike 

indicates the presence of the 

feature

• The timing of a spike indicates 

the relative strength of the 

feature

❑ A CId is a 1-hot temporal 

coding

• The better the cluster “match”, 

the earlier the spike

• CIds become features for the 

next network Layer
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TNN Roadmap Waypoints
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Waypoint 0: Input Encoding
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❑ Leverage biology

❑ Example: OnOff retinal ganglion cells

• Perform edge detection

❑ Encode spikes according to contrast between center and surround

• Most intense contrast yields earlier spikes

❑ However, binarize primary input to simplify initial experiments

• Separates Layer 1 temporal computation from temporal communication

6x6 RF at [14,14]

On

Off

On

Off
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❑ Unsupervised clustering

• Example 6x6 RFs from MNIST – OnOff encoded, binarized

• State-of-the-art: Kheradpisheh, et al.  "STDP-based spiking deep neural networks for 

object recognition." Neural Networks 99 (2018): 56-67.

Waypoint 1: Dense-to-Sparse CC
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STDP Works.



Layer 1  

OnOFF

Layer 2 Layer L

CC

Input

Encoders

CC

CC

CC

Output 

Layer

Layer 1
dense-to-

sparse

Input 
Encode

Layer 2
1st sparse-
to-sparse

General Layer
sparse-to-

sparse

Output Layer
sparse-to- ?

❑ The goal is a “cookie cutter” CC

• To allow construction of arbitrarily wide, arbitrarily deep TNNs

• No one has been successful to date – Wide-open research area

Waypoints 2 & 3: Sparse-to-Sparse CCs
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cookie cutter
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Temporal Neural Networks
Computation proceeds as a wave of spikes 

passes from inputs to outputs
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❑ Spikes are not the only way to encode 

values as the times of transient 

temporal events

❑ Edges work, too.

• Signal via 1 → 0 transitions

❑ Efficiencies remain intact

❑ Edges + race logic yields direct off-

the-shelf CMOS implementation

❑ An alternative to neuromorphic circuits

Race Logic*
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*Race logic: Madhavan, Sherwood, Strukov, UC-Santa Barbara 
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Mathematical Underpinnings



Contrasting Mathematical Approaches

❑ Neuroscience approach

• Real arithmetic  – differential equations

• Supports unbounded computational resolution

• Discretization done implicitly through conversion to floating point

❑ Computer Architecture approach

• Simple mathematics (Boolean algebra)

• Inherently discrete  

❑ A Computer Architecture approach to modeling neural operation

• The devices being modeled are naturally very low resolution (1-in-8)

• Use discrete math and small integers to implement temporal functions
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low resolution, unary computation



Space-Time Computing Network
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A Space-Time Computing Network is a feedforward composition of  functions, Fi, where: 

1) Each Fi has a finite state implementation

2) Each Fi is causal

The output spike time is independent of later input spike times

No spontaneous output spikes

3) Each Fi is invariant

If all the input spikes are delayed by some constant amount then the output 

spike is delayed by the same constant amount
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Space-Time Computing Network
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A Space-Time Computing Network is a feedforward composition of  functions, Fi, where: 

1) Each Fi has a finite state implementation

2) Each Fi is causal

The output spike time is independent of later input spike times

No spontaneous output spikes

3) Each Fi is invariant

If all the input spikes are delayed by some constant amount then the output 

spike is delayed by the same constant amount

TNNs are an important special case



(Newtonian) Space-Time Algebra

FCRC Copyright JE Smith  (June 2019) 44

Bounded Distributive Lattice

• 0, 1, 2,…, 

• Interpretation: points in time

• not complemented

 
.
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3

2
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Top

Bottom

“atomic excitation”

“atomic inhibition”

“atomic delay”

inc: b = a + 1 

a 1 b

lt: if a < b then c = a

else c = 

ca

b

≺

min: if a < b then c = a
else c       = b

c
a

b


Primitive Operators



Space-Time Networks
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❑ Theorem: Any feedforward composition of s-t functions is an s-t function

⇒ Build networks by composing s-t primitives

• Example:

note: shorthand for n increments in series:

x2

x1

y

2

  
x3 1

  0 2

1

  

4 5
5

x4
6

5  

a n b = a + n



Elementary Functions
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❑ Table of all two-input s-t functions

• All implementable with the three primitives

function name symbol

if a < b then a ; else b min 

if a   b  then a ; else  less  or equal ≼

if a   b  then a ; else  not equal 

if a  < b  then a ; else  less than ≺

if a  ≥ b  then a ; else b max 

if a ≥ b  then a ; else  greater or equal ≽

if a  = b  then a ; else  equal ≡

if a > b  then a ; else  greater than ≻

if a  > b  then a

   else if b  > a  then b ; else 
exclusive max x

if a  < b  then a

  else if b  < a  then b ; else 
exclusive min x



TNN Primitives Implemented as ST  Functions
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The Box: The way we (humans) think about computation
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❑ We try to eliminate temporal effects when implementing functions

• TNNs uses the uniform flow of time as a key resource

❑ We use add and mult as primitives for almost all mathematical models

• Neither add nor mult (except add of a constant) is an s-t function

❑ We prefer high resolution (precision) data representations

• Unary computing practical only for very low-res direct implementations

❑ We strive for complete functional completeness

• s-t primitives complete only for s-t functions

• There is no inversion, complementation, or negation
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Digital CMOS Implementation



❑ Spikes are not the only way to 

encode values as the times of 

transient temporal events

❑ Edges work, too.

• Signal via 1 → 0 transitions

❑ Efficiencies remain intact

❑ Combined with race logic yields 

direct off-the-shelf CMOS 

implementation

Race Logic*
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*Race logic: Madhavan, Sherwood, Strukov, UC-Santa Barbara 
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❑ S-T primitives implemented directly with conventional digital circuits

• Signal via 1 → 0 transitions

⇒ We can implement SRM0 neurons and WTA inhibition with off-the-shelf CMOS

⇒Very fast and efficient TNNs

Generalized Race Logic

FCRC Copyright JE Smith  (June 2019) 51

a

b
min(a,b)

a

b

D Qa a + 1
a

b

a   b
R Q

S

set

max(a,b)



TNN Primitives Implemented with CMOS Gates
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❑ Signal via edges w/ off-the-shelf CMOS

• minimize static power

• lots of wires

• signaling and functional operation very sparse 

❑ A direct implementation

• An alternative to analog spiking neuromorphic circuits
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❑ TNN with unsupervised, continual learning via STDP

❑ Describable w/ a temporal algebra

• Supports low resolution, discrete computation

❑ Hardware implementation 

• Implementable with digital CMOS

• Fast

• Energy efficient

Put It All Together: 1st Major Milestone 
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sequence of 

input patterns
sequence of 

output cluster 

identifiers (CIds)

Temporal Neural Network

Inference

non-binary 

combinatorial 

network

concurrent, local 

adjustment of 

synaptic weights

Training

similar input patterns 

map to same CId
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Closing Remarks



The Barrier to Entry is Low

❑ The TNN literature is relatively small

• TNN development is not very far along

• So there isn’t a lot of stuff to learn

❑ Low computational requirements

• A high-end desktop computer running parallel threads is adequate

❑ It is possible to be up to speed in a few months (at most)

• Writing a simulator is a good way to start
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Are We at a Tipping Point?
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❑ Experimental neuroscience spans more than 100 years

• The published literature is vast and continues to grow at a fast rate

❑ What if all experimental neuroscience research were to cease tomorrow?

• Is enough already known to allow reverse-architecting the neocortex?

❑ This would a tipping point for computer architecture research

• No more experimental data is needed

• We may already be there, or are fast approaching

❑ At the tipping point:

• Sufficient first-order effects are known

• It’s only a matter of combining them in a coherent and effective way
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