

Carnegie Mellon

Course Syllabus - Spring 2022

18-743: "Neuromorphic Computer Architecture & Processor Design"

Instructor: Prof. John Paul Shen Office Location: CMU-SV, B23 Email Address: john.shen@sv.cmu.edu **Office Hours: TBA**

Teaching Assistant: Harideep Nair **Email**: harideep.nair@sv.cmu.edu **Office Hours: TBA**

Teaching Assistant: Joseph Finn Email: jafinn@andrew.cmu.edu **Office Hours: TBA**

Distinguished Guest Lecturer: Prof. James E. Smith, University of Wisconsin & CMU Email Address: jes@ece.wisc.edu

Teaching Assistant: Prabhu Vellaisamy Email: pvellais@andrew.cmu.edu **Office Hours: TBA**

Class Schedule:

TR 03:05PM - 04:25PM ET, HH 1107, Pittsburgh, Pennsylvania Section A (48): Section SV (5): TR 12:05PM - 01:25PM PT, B23 211, Silicon Valley, California

Academic Services Assistant: Michele Passerrello Email Address: mpasseerr@andrew.cmu.edu

Office Location: HH 1112

Course Description:

•This course focuses on the investigation of biologically inspired neural networks that mimic both the functional behavior as well as organizational structure of the mammalian neocortex, with the objective of engineering silicon-based implementations possessing brain-like capabilities. This course introduces a taxonomy of Neural Networks (NN), based on: 1) Neuron Model, 2) Neural Coding, and 3) Learning Paradigm. The taxonomy includes three major classes of NNs: Artificial Neural Networks (ANN), Spiking Neural Networks (SNN) and Temporal Neural Networks (TNN). This course focuses mainly on TNNs because of their "neuromorphic" attributes that strongly adhere to biological plausibility. Based on TNNs, this course explores the potential of designing *Neuromorphic Sensory Processing Units* (NSPUs), that exhibit both brain-like processing capability and brain-like energy efficiency. In this course, students will work in small teams to pursue eight-week long projects exploring and prototyping application-specific NSPUs. These diverse projects can span applications, architectures, hardware designs, and CMOS implementations of NSPUs. Each team will have the opportunity to define and carry out a specific project with support and guidance from the teaching staff and industry advisors. This semester we plan to incorporate Brainchip's AKIDA neuromorphic chip/board and framework as one more experimental platform. These team projects can help prepare students for joining industry innovation teams developing AI/ML/DL accelerators or research teams pursuing neuromorphic computing systems research. Number of Units: 12 units. Pre-requisite: 18-740.

Background References on DL, DNN, & new AI:

- Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, and David Brooks, "Deep Learning for
- Brandon Reagen, Robert Adolf, Paul Whatmough, Gu-Yeon Wei, and David Brooks, "Deep Learning for Computer Architects," Synthesis Lectures on Computer Architecture, Morgan Claypool, August 2017. https://www.morganclaypool.com/doi/10.2200/S00783ED1V01Y201706CAC041 Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S. Emer, "Efficient Processing of Deep Neural Networks," Synthesis Lectures on Computer Architecture, Morgan Claypool, June 2020. https://www.morganclaypool.com/doi/pdfplus/10.2200/S01004ED1V01Y202004CAC050 Hawkins, Jeff. "A thousand brains: A new theory of intelligence." (2021), part 1 (91 pages). https://www.amazon.com/Thousand-Brains-New-Theory-Intelligence/dp/B08VWV2WDK

Tentative Course Calendar (18-743 Spring 2022):

Week	Date	Day	Class Activity	
Week 1	18-Jan	Tues	Lecture 1: Background & Motivation: "Why introduce this course now?"	JPS
	20-Jan	Thurs	Lecture 2: Course Overview: "What is this course all about?"	JPS
Week 2	25-Jan	Tues	Recitation 1: Tutorial on PyTorch Simulation Tools (Lab 1 intro)	HN
	27-Jan	Thurs	Lecture 3: Neuromorphic Architecture Overview	JES
Week 3	1-Feb	Tues	Lecture 4: Neuron Modelling and Column Organization	JES
	3-Feb	Thurs	Lecture 5: Agent Architectures: Reinforcement & Supervised Learning	JES
Week 4 (Lab 1)	8-Feb	Tues	(no class)	
	10-Feb	Thurs	Recitation 2: Tutorial on Verilog Implementation Tools (Lab 2 intro)	PV
Week 5	15-Feb	Tues	Lecture 6: Cortical Architectures and Promising Applications	JES
	17-Feb	Thurs	Lecture 7: AKIDA Neuromorphic SoC [Kris Carlson, Brainchip]	КС
Week 6	22-Feb	Tues	Lecture 8: AKIDA MetaTF Tools & HDK [Nikunj Kotecha, Brainchip]	NK
	24-Feb	Thurs	Recitation 3 Highlight of Previous Team Projects (3 projects from S21)	TAs
<mark>(Lab 2)</mark> Week 7	1-Mar	Tues	Lecture 9: Potential Team Projects & CMU's Neuromorphic Big Picture	JPS
	3-Mar	Thurs	Recitation 4: Discussion on Specific Project Proposals (finalize teams)	TAs
	7-Mar – 2	11-Mar	SPRING BREAK; NO CLASSES	
Week 8	15-Mar	Tues	Research Project Proposals #1 (10-15 min per team)	
	17-Mar	Thurs	Research Project Proposals #2 (10-15 min per team)	
Week 9	22-Mar	Tues	Lecture 10: Survey of Neuromorphic Circuits [Quinn Jacobson]	QJ
	24-Mar	Thurs	Lecture 11: Neuromorphic Research Results [Mikko Lipasti, U. Wisc.]	ML
Week 10	29-Mar	Tues	Recitation 5: Project discussions (Teams 6, 7, 8 Project Proposals)	TAs
	31-Mar	Thurs	Lecture 12: Personal Perspective and Latest Ideas on Neuromorphic	JES
Week 11	5-Apr	Tues	Research Project Updates #1 (10-15 min per team)	
	7-Apr	Thurs	Research Project Updates #2 (10-15 min per team) Recorded Zoom V	ideos
Week 12	12-Apr	Tues	Recitation 6: Project discussion and guidance	TAs
	14-Apr	Thurs	Lecture 13: Emerging Neuromorphic Industry Landscape	JPS
Week 13	19-Apr	Tues	Lecture 14: Personal Perspective on Neuromorphic [Gopal Srinivasan]	GS
	21-Apr	Thurs	Research Project Presentations #1 (15-20 min per team)	
Week 14	26-Apr	Tues	Research Project Presentations #2 (15-20 min per team)	
	28-Apr	Thurs	Research Project Presentations #3 (15-20 min per team)	
Week 15	3-May	Tues		
	10-May	Tues	Research Project Reports Due	