
Abstract—Temporal Neural Networks (TNNs), inspired from
the mammalian neocortex, exhibit energy-efficient online sensory
processing capabilities. Recent works have proposed a microar-
chitecture framework for implementing TNNs and demonstrated
competitive performance on vision and time-series applications.
Building on these previous works, this work proposes TNN7,
a suite of nine highly optimized custom macros developed
using a predictive 7nm Process Design Kit (PDK), to enhance
the efficiency, modularity and flexibility of the TNN design
framework. TNN prototypes for two applications are used for
evaluation of TNN7. An unsupervised time-series clustering TNN
delivering competitive performance can be implemented within
40 uW power and 0.05 mm2 area, while a 4-layer TNN that
achieves an MNIST error rate of 1% consumes only 18 mW
and 24.63 mm2. On average, the proposed macros reduce power,
delay, area, and energy-delay product by 14%, 16%, 28%, and
45%, respectively. Furthermore, employing TNN7 significantly
reduces the synthesis runtime of TNN designs (by more than 3x),
allowing for highly-scaled TNN implementations to be realized.

Index Terms—temporal neural networks, custom macros for
temporal functions, neuromorphic sensory processing units

I. INTRODUCTION

Deep Neural Networks (DNNs) have achieved state-of-the-
art performance on diverse applications involving sensory pro-
cessing tasks such as computer vision and speech recognition
[4]. However, the computing demand for DNNs has been
increasing exponentially and is on a highly unsustainable path
in terms of computational, economic and environmental costs
[10]. In contrast, Temporal Neural Networks (TNNs) [8], [9],
a special class of Spiking Neural Networks (SNNs), strive to
mimic biological neural networks with the goal of achieving
both brain-like capability and brain-like energy efficiency.

Inspired by brain’s temporal computational paradigm, TNNs
are based on a rigorous space-time algebra [8] and use precise
spike timings to represent and process information [12]. Unlike
DNNs that utilize compute-intensive tensor processing, TNNs
do not involve complex linear algebraic computation and
employ simple feed-forward processing based on spikes and
their timing relationships. Furthermore, TNNs are capable of
online continuous learning using biologically-plausible local
learning algorithms called Spike Timing Dependent Plasticity
(STDP), unlike backpropagation-fueled DNNs that have a
strict bifurcation between training and inference phases.

These features make TNNs truly neuromorphic and there-
fore suitable for building extremely energy-efficient edge-
native sensory processors for applications such as time-series
clustering [1]. A microarchitecture framework for efficient
CMOS implementation of TNNs has recently been proposed

Fig. 1: Functional components of a pxq TNN Column and
associated custom macros (highlighted in yellow)

in [6]. The proposed implementation methodology utilizes two
notions of temporal resolution and thereby hardware clocks:
1) unit clock serving as the finest temporal resolution to
calibrate the spike timings within a single instance of input,
and 2) a coarser resolution gamma clock to separate different
input instances. The authors in [6] use standard off-the-shelf
45nm CMOS to implement the key TNN microarchitectural
elements, namely, neurons, columns and STDP learning rules.

This paper builds on and goes beyond the work in [6],
exploring the potential for creating a customized cell library
that utilizes inherent TNN principles to improve the power,
performance and area (PPA) of TNN designs. Furthermore,
this work serves as the first step towards creating a scalable
design framework and toolsuite for building TNN-based neu-
romorphic processors. We make four key contributions: 1) the
TNN design process, including gate-level implementations, is
replicated in 7nm predictive CMOS using the ASAP7 Process
Design Kit (PDK) [2], and post-synthesis Power-Performance-
Area (PPA) results are reported; 2) a set of nine new highly-
optimized custom macro extensions to ASAP7, called TNN7,
that can be used for implementing highly energy-efficient
parameterizable TNNs is proposed; 3) significantly improved
scaling of PPA as well as synthesis runtime for larger design
sizes, achieved by TNN7, is demonstrated; and 4) the hardware
complexities of TNN prototypes in [9] for image classification,
and [1] for unsupervised time-series clustering, are evaluated
and shown to achieve significant improvements using the
custom macro extensions, demonstrating the potential of TNNs
for energy-efficient sensory processing with online learning.

The proposed nine macros have been designed to target and
optimize the primary TNN building blocks, or TNN columns.
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TABLE I: Proposed Custom Macros

TNN Proposed Function Figure
Units Macros Description Label

Synaptic syn readout Perform RNL readout Fig. 2
Response syn weight update Perform weight update Fig. 3

WTA less equal Perform temporal inhibit Fig. 4

STDP
stdp case gen Control STDP cases Fig. 5

incdec Control update direction Fig. 6
stabilize func Stabilize weights bimodally Fig. 7

Utility
spike gen Perform spike encoding Fig. 8

pulse2edge Convert from pulse to edge Fig. 9
edge2pulse Convert from edge to pulse Fig. 10

Fig. 1 illustrates the custom macros in a typical pxq column
(key TNN building block) with p synapses per neuron and
q such neurons, followed by winner-take-all (1-WTA) lateral
inhibition. As majority of the TNN computation occurs in the
synaptic crossbar, five macros are dedicated for synapses (two
for synaptic inference or response function generation and
three for STDP local learning). These synapses then feed into
corresponding neuron bodies which perform response function
summation through adder trees. Another macro enables the key
comparison operation in WTA and the remaining three macros
serve more generic utility purposes (e.g. spike encoding).

These macros (elaborated in Section III) are summarized in
Table I along with their functional descriptions and schematic
figure labels. It should be noted, these custom macros can be
generalized beyond use in the microarchitecture model in [6],
and can serve as the foundation for building generic temporal
functions based on space-time algebra [8]. To the best of our
knowledge, this is the first work that proposes custom macros
for highly efficient scalable CMOS implementation of TNNs.

II. DESIGN FRAMEWORK & METHODOLOGY

The proposed TNN7 custom cells are developed as hard
macros using an open-source 7nm predictive Process Design
Kit (PDK), called ASAP7 [2]. This section describes the
ASAP7 library and the CAD design flow used in this work.

A. Framework

ASAP7 [2] is an academically certified, foundry agnostic,
predictive PDK based on 7nm finFET technology. This in-
volves a standard cell library and a collection of rule-sets for
physical verification - design rule checks, layout vs. schematic,
and parasitic extraction. The electrical activity of the transistor
models is scaled from the BSIM-CMG SPICE models [3],
which captures advanced trends in the finFET industry. ASAP7
offers transistor device models at four threshold voltages
(SLVT, LVT, RVT and SRAM), and three process corners,
typical-typical (TT), slow-slow (SS) and fast-fast (FF).

In this work, following selections are used for the design of
custom macros: 1) RVT device models with nominal operating
conditions at TT corner (0.7V supply voltage and 25°C operat-
ing temperature), 2) composite current source (CCS) modeling
for timing files, and 3) Cadence/Mentor Graphics toolchain for
logic synthesis, schematic, layout and characterization.

B. Methodology

In developing the custom macros, Cadence tool suite is used
as follows: 1) Genus for register-transfer level (RTL) logic
synthesis, 2) Virtuoso for schematics and layouts, 3) Liberate
for characterization of the macros and generating Liberty (.lib)
timing files, and 4) Abstract for generating Liberty Exchange
Format (.lef) files of the macros. Layout verification, including
Layout Versus Schematic (LVS) and Design Rule Check
(DRC), is performed using Mentor Calibre and the resulting
LVS & DRC-clean Graphic Data Stream (GDS) files are
imported to Abstract. Moreover, Calibre Parasitic Extraction
(PEX) tool reads the layout and generates the extracted netlist
which is then used for Spectre simulations in Liberate.

In order to report the optimization gains presented in Section
IV, following steps are adopted: 1) Genus is used to synthesize
the original functional modules from [6] with the ASAP7
standard cell library and establish the baseline values; 2)
TNN7 macro equivalent of the original modules are designed
by either (i) structurally optimizing at the microarchitectural
level, or (ii) creating mixed-signal circuits from scratch in
Virtuoso; 3) Genus is used to resynthesize the modules by
replacing the ASAP7 standard cells with the TNN7 .lib and
.lef files (obtained from Liberate and Abstract), to obtain
post-synthesis area, power and delay. These values are then
compared against the ASAP7-based post-synthesis values to
compute the corresponding improvements.

III. TNN7 CUSTOM MACRO CELLS

This section describes the circuit-level design of the pro-
posed nine macros and their functionalities in detail. The
macros are segregated into TNN functionality cells, that per-
form exclusive TNN functions, and utility cells, that perform
generic functions like spike encoding.

A. TNN Functionality Cells

This subsection describes the six macros implementing
synaptic response, WTA and STDP. The following notations
are used for the two hardware clocks introduced in Section I
- aclk for the unit clock and gclk for the gamma clock.

OUT

INPUT_SPIKE

ACLK

STORE_WEIGHT[0:2] EN

RST_B
CLK

Q

SYNC_REG

D

1'b1

Fig. 2: syn readout macro

1) syn readout and syn weight update: As noted in [6],
synapses constitute majority of the hardware complexity in
TNNs. Hence, in this work, main synaptic functions are iden-
tified, optimized and modularized into custom macros. The
two key synaptic functions of response function generation
and weight update are implemented as syn readout (Fig. 2)



Fig. 3: syn weight update macro

and syn weight update (Fig. 3) macros respectively. When an
input spike pulse arrives, the synaptic weight undergoes a unit
decrement every cycle, until it wraps around to the original
value. During this process, the syn readout macro takes in the
weight value every cycle and asserts the output until the weight
reaches zero, and then deasserts it. This parallels the unary-
coded ramp-no-leak (RNL) response function in [6]. The
syn weight update macro controls the weight decrementing
process during readout, and updates the synaptic weight during
“learning”, via the STDP-based control signals (WT INC and
WT DEC). Only one of the control signals is active at a time
and performs either unit increment or decrement. Note that the
syn weight update macro merely updates the weight based on
external control signals; the control signals are generated by
input spike (inference) and the three STDP macros (learning).

This modular approach to designing synapses provides
flexibility to implementing TNN frameworks. For example, the
response function can be changed by modifying syn readout
while keeping the other macros intact. This flexibility adds to
the diversification of TNN models for diverse applications.

DATA_IN
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Fig. 4: less equal macro

2) less equal: The less equal macro (Fig. 4) models the
temporal inhibitor and functions as the basic unit for WTA
inhibition. More generally, it implements the temporal oper-
ation of “less equal” from space-time algebra [8] and hence
is widely used in the TNN design framework. The input data
(DATA IN) value is propagated to the output if and only if
it arrives earlier or at the same time as INHIBIT; else, it is
suppressed. This module’s functionality can be achieved by
using a single transistor [11]. However, to mitigate the high
leakage current observed during the cell’s characterization, a
pair of NMOS and PMOS transistors is employed.
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Fig. 5: stdp case gen macro

3) stdp case gen: The stdp case gen macro generates the
essential control signal outputs, corresponding to the four
STDP cases from Table I in [6]. As shown in Fig. 5, it takes in
the negated output of less equal (GREATER) and input/output
spikes represented as edge transitions (EIN/EOUT), and gen-
erates a one-hot encoded output for the STDP cases. When
both input and output spikes are absent, the output is zero,
resulting in no weight update during STDP.

Fig. 6: incdec macro

4) incdec: The incdec (Fig. 6) macro takes in the STDP
cases and Bernoulli random variables (BRVs) as inputs (as in
[6]), and generates control signals for driving the local synaptic
weight update process. It consists of AND-OR-INVERT (AOI)
cells that activates INC for STDP cases 0 and 2, and activates
DEC for cases 1 and 3, if the BRV is one. It is important to
note that the modularity in STDP logic (due to stdp case gen
and incdec) allows for easy modification of STDP rules.

5) stabilize func: This macro (Fig. 7) is responsible for
selecting the appropriate BRVs as per the stabilization function
in [6], and plays a key role in establishing weight convergence.
It is architected as an 8:1 multiplexer module with a hierarchy
of Gate Diffusion Input (GDI) cells [5], each acting as a
2:1 multiplexer. The 2:1 GDI multiplexers utilize just two
transistors, however suffer from degraded output levels. This
is corrected by applying level restorers at the output, making
the final design both robust and highly efficient.

B. Utility Cells

The remaining three macros are utility cells generalized to
perform broader functions within the TNN framework such as
spike encoding, synchronization, etc. They are detailed below.



Fig. 7: stabilize func macro

1) spike gen: The spike gen macro (Fig. 8) plays a key
role in spike encoding. It implements the combinational logic
associated with a 3-bit counter used to convert input pulses of
any width to an 8 cycle-wide output pulse (for 3-bit synaptic
weights). As demonstrated in [6], this spike encoding is
central to the ramp-no-leak (RNL) functionality of the compact
synapse design used in the TNN framework, and can be easily
extended to generalize for arbitrary pulse widths.
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Fig. 8: spike gen macro

2) pulse2edge and edge2pulse: TNN implementations uti-
lize edge-encoded signals (i.e., encoded as edge transitions
from 0→1) for performing various temporal operations. The
pulse2edge macro (Fig. 9) transforms an incoming pulse signal
into an edge signal (lasting until the end of current gclk cycle),
and is used extensively across the TNN framework. On the
contrary, edge2pulse macro (Fig. 10) outputs a pulse lasting
one aclk cycle as soon as an edge signal arrives at its input.
It is typically used to produce internal reset pulses from gclk
to synchronize the sequential blocks in the datapath.

All nine macros have been carefully designed to use
minimal number of gates and transistors to achieve their
corresponding functionalities. In order to further reduce cell
area, we perform diffusion layer overlapping during manual
layout. Table II reports their respective PPA metrics. In order
to demonstrate their benefits, these macros are used to build
various TNN prototypes as discussed in the next section.

IV. BENCHMARKING AND RESULTS

This section presents 7nm post-synthesis power, perfor-
mance, area (PPA) results for application-specific TNN pro-

Fig. 9: pulse2edge macro

Fig. 10: edge2pulse macro

TABLE II: 7nm PPA for proposed custom macros

Custom Macro Leakage Power Delay Cell Area
Name (nW ) (ps) (µm2)

syn readout 0.43 32 0.50
syn weight update 1.22 190 1.24

less equal 0.17 30 0.17
stdp case gen 0.34 66 0.60

incdec 0.26 56 0.34
stabilize func 0.12 158 0.36

spike gen 1.46 28 1.55
pulse2edge 0.44 22 0.44
edge2pulse 0.49 58 0.61

totypes. Performance is measured in terms of computation
time (time taken to process one input), and is derived from
the critical path delay and the gamma period as in [6]. Area
is the total cell and net area, while power includes dynamic
(calculated using Cadence Joules) as well as leakage power.

In order to demonstrate the efficacy of the TNN7 macros, we
perform benchmarking for two groups of TNN prototype de-
signs targeting two application domains: 1) 36 single-column
TNN designs for unsupervised time-series clustering on 36
UCR datasets from [1], with total synapse counts ranging from
130 to 6750; and 2) three much larger multi-layer TNN designs
for MNIST digit recognition, namely, 2-layer, 3-layer and 4-
layer TNNs (from [9]) with total synapse counts of 389K,
1,310K and 3,096K, respectively. Following [6], an operating
frequency of 100 kHz is chosen for aclk based on real-time
operation requirement. We observe linear scaling of dynamic
power with frequency and omit those results here for brevity.

A. UCR Time-Series Clustering

As shown in [1], TNN designs outperform or are competi-
tive to state-of-the-art algorithms for unsupervised time-series
clustering, averaging across the 36 UCR benchmark datasets.
A specific column configuration is used for each of the 36
UCR datasets depending on the corresponding input size and
number of clusters. While the hardware complexity analysis
in [1] uses standard technology scaling to estimate the 7nm
results from 45nm post-synthesis results, we present direct



Fig. 11: ASAP7 vs. TNN7 7nm PPA scaling across synapse
counts for the 36 single column TNN designs as used in [1]

post-synthesis 7nm PPA results for all 36 TNN designs and
further optimize them with our custom macros.

To assess the range of PPA complexities for time-series
clustering TNNs, we plot area, power, computation time, and
energy-delay product (EDP), for the 36 single-column designs
in Fig. 11. EDP is used here to gauge both energy-efficiency
and performance. Three key results can be observed here:

1) PPA synaptic scaling: Area and power scale linearly
with total synapse counts for both ASAP7 baseline and
TNN7 custom designs, whereas computation time scales
logarithmically with synapses per neuron (p). This cor-
roborates with the characteristic scaling equations in [6].
Note that x-axis is monotonic in p*q (not p), making
computation time data points non-monotonic in Fig. 11.

2) PPA improvements with TNN7: TNN7 designs consume
about 18% less power and 25% less area compared to
baseline designs, and are about 18% faster. EDP improves

TABLE III: ASAP7 vs. TNN7 7nm PPA comparison for three
TNN prototype designs for MNIST from [9]

TNN Synapse Error Cell Power Comp. Area
Design Count Rate Library (mW ) Time (ns) (mm2)

2-Layer 389K 7% ASAP7 2.62 49.00 4.27
TNN7 2.25 41.38 3.09

3-Layer 1,310K 3% ASAP7 8.83 78.37 14.37
TNN7 7.57 66.16 10.42

4-Layer 3,096K 1% ASAP7 20.86 108.46 33.95
TNN7 17.89 91.58 24.63

by more than 45%, which clearly shows TNN7 designs
are significantly more energy-efficient and are also faster.
The gap between the two designs grows with increasing
synapse count, which implies, as TNN designs grow
larger, they reap even more benefits from custom macros.

3) Potential for low-power edge-native sensory processors:
With custom macros, even the largest TNN column with
6,750 synapses consumes just 0.054 mm2 area and 39 µW
power. Note that this also accounts for on-chip learning
via STDP, highlighting the value of proposed macros
for highly energy-efficient TNN sensory processing units
capable of online continuous learning.

B. MNIST Digit Recognition

Here, we move to much larger TNN designs and evaluate
three multi-layer TNN prototypes for MNIST digit recogni-
tion, with different design points in the error rate vs. hardware
complexity tradeoffs. The three designs are as follows: 1) 2-
layer TNN (389K synapses and 7% error) derived from ECVT
in [9]; 2) 3-layer TNN (1.31M synapses and 3% error) derived
from ECCVT in [9]; and 3) 4-layer TNN (3.096M synapses
and 1% error) derived from ECCCVT in [9]. Table III provides
7nm PPA for these designs, derived using synaptic count
scaling as in [6]. Note that “C” layers above consist of TNN7
columns, however the “VT” layers [9], that are a simpler form
of TNN columns, are currently not supported within TNN7.
Hence, the synaptic scaling here treats all network layers as
“C”, thereby providing an upper limit on the PPA complexity.

From Table III, similar PPA improvements with custom
macros can be observed for these complex multi-layer TNNs
(14%, 16%, and 28% improvements on power, performance
and area, respectively). The 4-layer TNN with 3M synaptic
weights and 99% MNIST accuracy consumes only 17.89
mW power and 24.63 mm2 area. This TNN represents an
edge-native real-time sensory processing unit that is capable
of both online (MNIST-like) image-based classification and
continuous learning, while consuming less than 20 mW power.

Using the survey of MNIST neural networks from [7], it can
be observed that for similar accuracies, TNN-based processing
units that consume a few tens of mW power are about
1000x more efficient comparing to GPUs, 100x comparing to
FPGAs and 10x comparing to many state-of-the-art ASICs that
consume a few hundreds of mW power. Furthermore, TNN7
enhances this scalability as it offers a lower-cost trajectory in
the accuracy vs. hardware complexity tradeoff.



Fig. 12: ASAP7 vs. TNN7 synthesis runtime comparison

V. SYNTHESIS RUNTIME EVALUATION

A further advantage to using a custom cell library is signif-
icantly faster design netlist generation. As the macro design
instances are preserved and not manipulated during synthesis,
it enables the synthesis tool to realize a design hierarchy
by directly mapping the hard macros, thereby mitigating the
combinatorial search space complexity for the optimization
tool. To evaluate this benefit for TNN7, we use the following
setup: Genus v19.1 is run on a server comprising of 48 Intel(R)
Xeon(R) E5-2680 CPU cores with the maximum number of
CPUs utilized set to 8. Synthesis was performed on the same
column configurations from Section IV-A, with the TNN7
custom macros as well as without them (ASAP7 baseline).

Fig. 12 depicts the runtimes for both standard ASAP7-
based and corresponding TNN7-based designs. On average,
TNN7 speeds up the netlist generation (including mapping and
optimization) by 3.17x with respect to the baseline ASAP7-
based designs. Using TNN7, the largest column with 6750
synapses is synthesized in 926 seconds (∼15 minutes), as
opposed to 3849 seconds (∼1 hour) for the baseline design.
Fig. 12 illustrates increasing runtime benefits for TNN7 as the
designs grow larger. This trend can be extrapolated beyond
single columns to multi-layered networks based on synapse
counts, demonstrating the scalability of TNN7 to realize deep
TNNs, that would have otherwise suffered from long runtimes.

VI. CONCLUDING REMARKS

Prior works have shown that TNNs can achieve highly
energy efficient brain-like sensory processing. This work de-
velops a customized 7nm cell library, TNN7, consisting of
nine new macros to enable extensive TNN design optimization.
The TNN7 macros yield 14%, 16%, 28% and 45% improve-
ments in power, performance, area and EDP, respectively. This
surpasses typical area-power-delay trade-offs by achieving
significant improvements in all three PPA metrics. With TNN7,
competitive performance to state-of-the-art can be achieved on
time-series clustering with just 40 µW and 0.05 mm2, and on
MNIST with only 17.89 mW and 24.63 mm2. This shows the
feasibility of TNN-based edge-native neuromorphic processors
capable of online continuous learning.

This work can serve as a foundation for building a complete
design framework and toolsuite, that can translate application-

(a) ASAP7 (b) TNN7

Fig. 13: ASAP7 vs. TNN7 layouts for 82x2 column

specific TNN designs from the functional level (software
models) to hardware implementation and physical design.
Towards that goal, our ongoing work involves open-sourcing1

the custom macros and developing an automated RTL-to-
GDSII process flow, to generate signoff layout and PPA
metrics for arbitrary TNN designs. Fig. 13 illustrates both
baseline and TNN7-based place-and-route layouts for the 82x2
column developed for UCR TwoLeadECG application as used
in [1]. The layouts corroborate the efficacy of the proposed
macros as the routing density in the custom design (Fig. 13b) is
visibly less complex as compared to the baseline design (Fig.
13a). Furthermore, the custom library can be generalized to
include the space-time primitives in [8] and thereby implement
any bounded space-time function directly in CMOS.

REFERENCES

[1] S. Chaudhari, H. Nair, J. M. Moura, and J. P. Shen, “Unsupervised
clustering of time series signals using neuromorphic energy-efficient
temporal neural networks,” in Int’l Conference on Acoustics, Speech
and Signal Processing (ICASSP). IEEE, 2021.

[2] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “Asap7: A 7-nm finfet predictive process
design kit,” Microelectronics Journal, vol. 53, 2016.

[3] J. P. Duarte, S. Khandelwal, A. Medury, C. Hu, P. Kushwaha, H. Agar-
wal, A. Dasgupta, and Y. S. Chauhan, “Bsim-cmg: Standard finfet
compact model for advanced circuit design,” in 41st European Solid-
State Circuits Conference (ESSCIRC). IEEE, 2015.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, 2015.
[5] A. Morgenshtein, A. Fish, and A. Wagner, “Gate-diffusion input (gdi)-a

novel power efficient method for digital circuits: a design methodology,”
in Int’l ASIC/SOC Conference. IEEE, 2001.

[6] H. Nair, J. P. Shen, and J. E. Smith, “A microarchitecture implementation
framework for online learning with temporal neural networks,” in IEEE
Computer Society Annual Symposium on VLSI (ISVLSI), 2021.

[7] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling
low-power, highly-accurate deep neural network accelerators,” in Int’l
Symposium on Computer Architecture (ISCA), 2016.

[8] J. Smith, “Space-time algebra: A model for neocortical computation,”
in Int’l Symposium on Computer Architecture (ISCA), 2018.

[9] J. E. Smith, “A temporal neural network architecture for online learning,”
arXiv preprint arXiv:2011.13844, 2020.

[10] N. Thompson, K. Greenewald, K. Lee, and G. Manso, “The computa-
tional limits of deep learning,” arXiv preprint arXiv:2007.05558, 2020.

[11] G. Tzimpragos, A. Madhavan, D. Vasudevan, D. Strukov, and T. Sher-
wood, “Boosted race trees for low energy classification,” in Architectural
Support for Prog. Languages and Operating Systems (ASPLOS), 2019.

[12] R. VanRullen, R. Guyonneau, and S. J. Thorpe, “Spike times make
sense,” Trends in neurosciences, vol. 28, no. 1, pp. 1–4, 2005.

1https://github.com/prabsy96/TNN7


